

M21 Knife Delay Lean Manufacturing Study

Charles Carr, Jeffrey W. Herrmann, David Rizzardo

Overview

Project Objective

To show how lean manufacturing principles can be applied to improve Indian Head manufacturing operations.

Approach

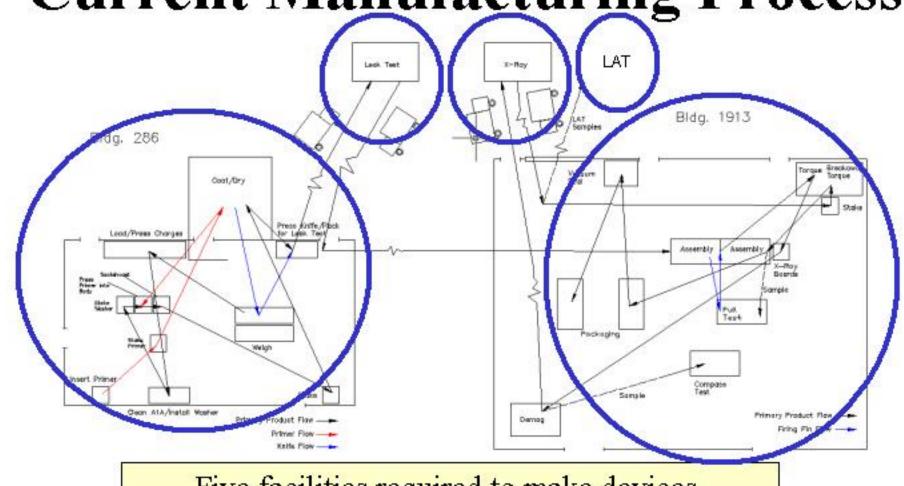
An in-depth study of the M21 Knife Delay manufacturing process to identify improvement opportunities in CAD/PAD manufacturing and to predict potential benefits for the product family of delay cartridge and impulse cartridge programs.

Primary Recommendations:

Create two manufacturing cells for manufacturing this product family and install leak test, right-sized X-ray, demag, demag test, and auto-weighing equipment.

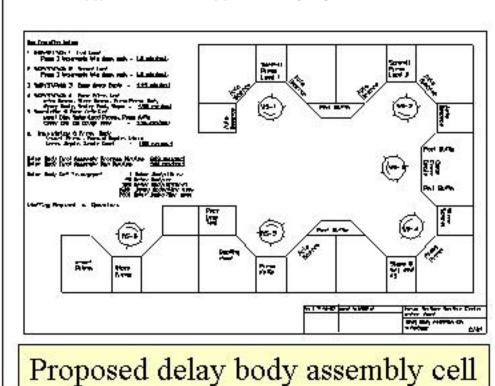
Consolidate operations and support activities when feasible.

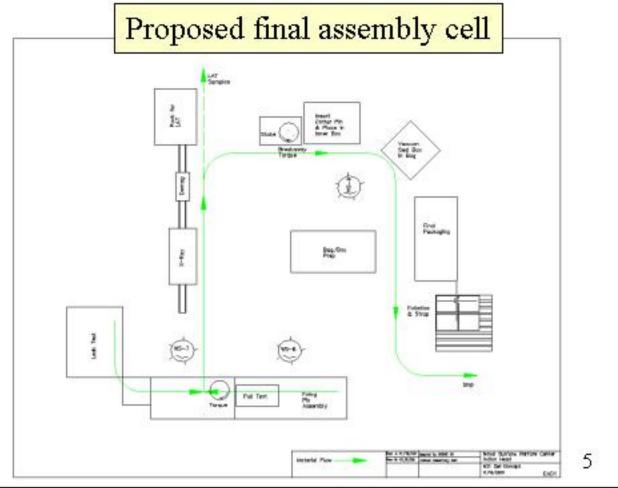
Methodology


- Darrin Krivitsky and Katie Macey from CAD/PAD Manufacturing Division participated in project.
- Project team visited all steps of manufacturing system to collect data:
 - -Studied sample parts
 - -Reviewed part drawings, standard operating procedures
 - -Created charts of process flow
 - -Videotaped operations
 - -Made drawings of workstation layouts
 - -Interacted with operators
- Analysis conducted with data collected on-site and that provided by CAD/PAD Manufacturing.
- Results validated by Indian Head collaborators.

M21 Components

Cutter, Delay, Propellant Actuated, M21 Assembly 8875978


Current Manufacturing Process



Five facilities required to make devices.

Primary Recommendation (A)

Two cells with leak test, right-sized X-ray, demag, and demag test equipment

Primary Recommendation (A)

Return on Investment

Annual requirements of M21 and similar products: 24,000 units per year.

Labor reduction: from 89 to 35 minutes per unit; from 35,600 to 14,000 hours per year.

Cost savings = \$2,110,000 per year

(at \$97.49 per hour)

Estimated investment = \$415,000 X-ray: \$95,000

Demag: \$10,000

Demag test: \$10,000

Training and equipment relocation: \$100,000 Education and consulting: \$200,000

Net savings = \$1,695,000 the first year, \$2,110,000 out years

Payback period = 2 months.

Increased capacity = 2,800 units per month (regular time).

Primary Recommendation (B)

Add auto-weigh equipment to delay body assembly cell. **Return on Investment:**

Annual requirements of M21 and similar products: 24,000 units per year.

Labor reduction: from 89 to 18 minutes per unit; from 35,600 to 7,200 hours per year. Cost savings = \$2,770,000 per year (at \$97.49 per hour)

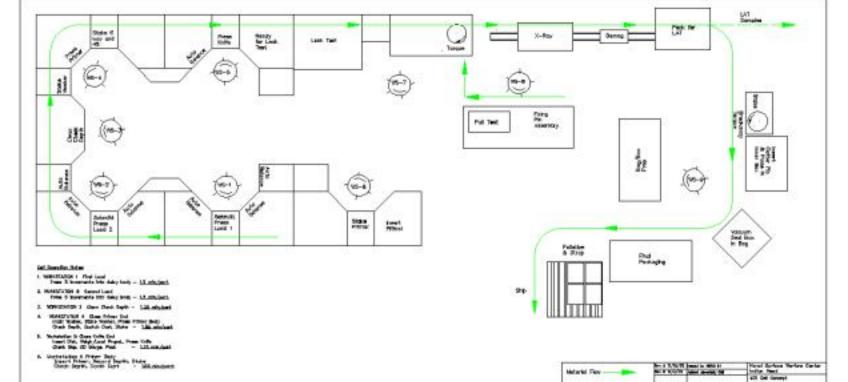
Estimated investment = \$555,000

X-ray: \$95,000, Demag: \$10,000, Demag test: \$10,000

Autoweigh: \$120,000

Training and equipment relocation: \$120,000

Education and consulting: \$200,000


Net savings = \$2,215,000 the first year, \$2,770,000 out years

Payback period = 2 months.

Increased capacity = 5,500 units per month (regular time).

Primary Recommendation (C)

Consolidate operations and support activities in one building to achieve goal of world-class manufacturing

Conclusions

The M21 Knife Delay study designed two lean manufacturing cells and estimated the operational benefits of these cells:

- Significant reductions in labor content,
- Cost savings of over \$2 million per year,
- Additional capacity for more on-site production.

This study also identified other opportunities for improvement:

Design for manufacturing, better tooling and equipment, product & employee organization, and safety and housekeeping.

An implementation project has begun transforming CAD/PAD manufacturing operations into a world-class manufacturing facility.