

Next Generation Molding Technologies

S. K. Gupta, G. Fowler, X. Li, A. Priyadarshi, M. Schröder, Univ. of Maryland

Injection Molding Using Multi-Piece Permanent Molds: Space Puzzle Molds

- Enable Manufacturing of Geometrically Complex Objects
- » Objects that are impossible to make using traditional two-piece molds
- » Applications: automobile parts, consumer appliance housings
- Current Research Thrust
 - » Development of design for manufacturing guidelines for parts being produced using space puzzle molds
 - draft angles, section dimensions, tolerances
 - » Development of geometric reasoning algorithms for automated design of multi-piece permanent molds
 - disassembly-based spatial partitioning

Low Temperature Molding Using Multi-Piece Sacrificial Molds

- Enable Manufacturing of Geometrically Complex Objects
 - » Objects that are impossible to make using permanent molding processes due to demolding problems
 - geleasting of complex ceramic parts
 - » Applications: ceramic housing, heat exchangers, turbine parts
- Current Research Thrust
 - » Development of a molding process that combines CNC machining and layered fabrication for mold fabrication
 - large objects with very small features
 - low cost molds
 - » Development of geometric reasoning algorithms for automated design of multi-piece sacrificial molds
 - accessibility and process driven spatial partitioning

Multi-Stage Molds for Producing Multi-Material Objects

- Enable Manufacturing of Multi-Material Objects
 - » Difference in compliance, color, and hardness can be utilized to create products with superior performance
 - in-mold assembly: no assembly operations are needed afterwards
 - » Applications: automobile parts, toys, consumer products, articulated mechanisms
- Current Research Thrust
- » Development of a new multi-stage molding process for providing geometrically complex interfaces
 - combination of chemical, macroscopic, and mesoscopic interfaces
 - articulated assemblies
- » Development of geometric reasoning algorithms for automated design of multi-stage molds
 - disassembly and assembly driven spatial partitioning

Examples of Multi-Piece Permanent Mold

An Example of Sacrificial Multi-Piece Mold

An Example of Multi-Stage Mold

Examples of Objects Produced Using Permanent Multi-Piece Molds

Examples of Objects Produced Using Sacrificial Multi-Piece Molds

Example of Objects Produced Using Multi-Stage Molding

7