

WAREHOUSING IN VIRTUAL ENVIRONMENTS

Zafer Tuncali, M.S. Student - Dr. D. K. Anand, Professor

Overview

An interactive environment where facility layout designers may develop and test their existing ideas and design skills towards creating more efficient manufacturing and storage facilities.

Utilities and Methods Developed

- Interactive floor plan development utility with extrusion capabilities for construction of the warehouse
- Optimal storage assignment and retrieval of items
- Analysis and display of simulation results
- Utility for picking up storage items for a detailed visual inspection
- A systematic mapping of software generated from the SGI workstation to the CAVE
- Performance optimization strategies in order to render a very large database of 3D objects with an acceptable frame rate

Interactive Floor Plan

Floor plan can be created from scratch and extruded into a 3D model

Walk-around in Virtual Warehouse

The CAVE user/users can walk around inside the storage facility or even fly over it, exploring a structure that doesn't even exist yet. After viewing from various standpoints and angles, the existing design may be modified. Significantly lower construction cost and time can be achieved.

Optimal Storage Assignment

The CAD/PAD products are optimally placed on the storage racks using the "Dedicated Storage" algorithm in order to obtain a higher system throughput performance.

Storage Performance Analysis

Embedded "Analysis Module" within our "Virtual Warehouse" program analyzes the system with respect to three different system performance criterion:

- Storage density
- System throughput
- Explosion/fire safety

The results of this process are displayed on a percent scale on the 3D analysis display chart.

Animated Storage and Retrieval

The warehouse designer may want to observe how a particular item will be retrieved from the rack and delivered to the I/O point. The S/R animation gives the designer an idea about the optimal robot path, the best pick-up location for each rack as well as the accessibility of a CAD/PAD product.

Performance Issues

To achieve a higher frame rate (FPS):

- Level-of-Detail (LOD) processing has been tried and proven to be unfeasible for our application
- Multi-source lighting has been limited to two directional light sources at infinite distance from the objects
- Objects have been modeled on Pro/E and imported into OpenGL Performer in STL format

Conclusions

- Our "Virtual Warehouse" program allows one to construct a storage facility from scratch in VR and is currently capable of assessing existing designs for operational performance
- We are currently working on an optimization module that will calculate an optimal warehouse configuration, thus allowing the user to start with a good design and eventually reach a superior result by making personal modifications in a virtual environment

8