

Nitration of Aromatic Compounds in Ionic Liquids

Prof. Guangbin Cheng

Dr Hongwei Yang

Nanjing University of Science of Technology

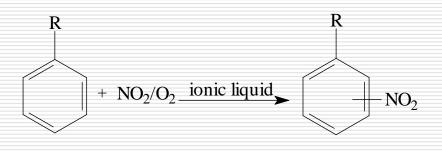
December 9th , 2010

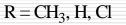
Nanjing University of Science & Technology

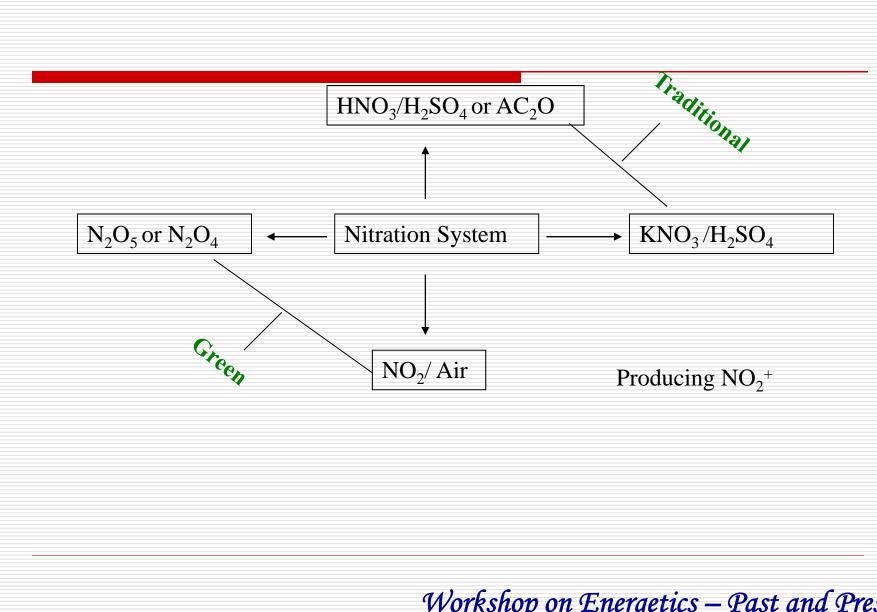
is part of Ministry of Information Industry of China and the national key universities

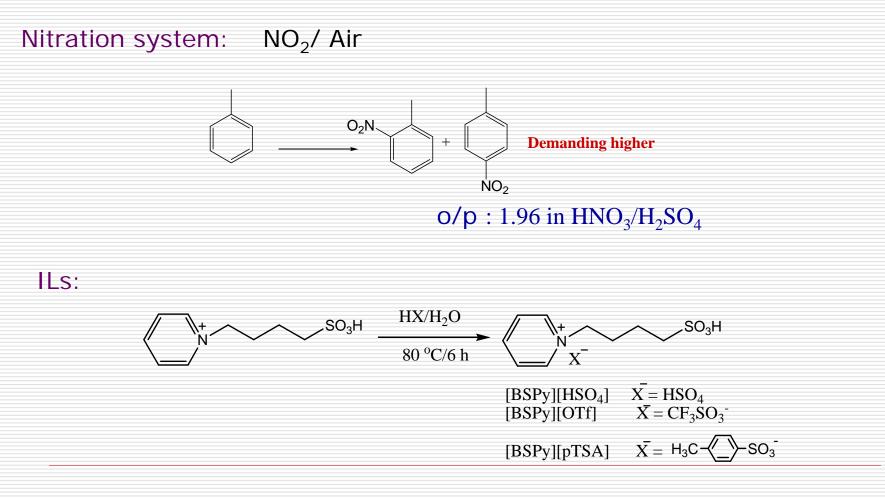
The school was founded in 1953 by the New China. multi-disciplinary comprehensive university

including science, engineering, culture, economics, management, law, teaching.


18 schools; 5012 graduate students, and 14,772 college students in the school-based people,


1512 full-time teaching and research staff


Nitration of simple aromatic compounds


Mono-nitro product: Key organic intermediates or energetic materials

Ionic liquid(IL): a salt in the liquid state, organic cations and inorganic anions Solvent free: solvent and catalyst; recycled, easier to separated

Table 1 nitration of toluene in [BSPy][HSO₄] under different conditions^a

	Entry	[BSPy][HSO ₄] ^d (mol%)	NO ₂ (mL)	Yield ^e (%)	Produ	Ortho/		
					Ortho	Meta	Para	Para
	1	0	0.5	11.4	57.9	5.7	36.4	1.59
	2	5	0.5	33.0	55.4	3.9	40.7	1.36
	3	10	0.5	33.3	53.7	3.7	42.6	1.26
	4	15	0.5	77.0	54.2	3.3	42.5	1.27
	5	20	0.5	52.8	54.1	3.5	42.4	1.27
	6	15	0.2	16.7	54.2	4.3	41.5	1.31
	7	15	0.8	35.9	54.3	3.7	42.0	1.29
	8	15	1	28.7	54.5	3.5	42.0	1.30
	9 ^b	15	0.5	35.7	51.0	3.9	45.1	1.13
	10 °	15	0.5	4.6	56.0	0	44.0	1.27

Substrate 10 mmol; reaction time and temperature: a-15 °C /30 min, then 0 °C /5 h, and rt/20 h (when the air balloon was removed). b-15 °C /30 min, then 0 °C /5 h, and 45 °C /20 h (when the air balloon was removed). c-15 °C /30 min, then 0 °C /5 h. dmole ratio to toluene. °Calculated by quantitative GC.

Table 2 nitration of simple aromatic compounds catalyzed by different ionic liquids

Entw	IL	R	Yield ^c (%)	Product distribution (%)			Orth o /Derre
Entry				Ortho	Meta	Para	Ortho/Para
1 ^a	[BSPy][HSO4]	CH ₃	77.0	54.2	3.3	42.5	1.27
2 ^a	[BSPy][OTf]	CH ₃	63.6	53.0	3.3	43.7	1.21
3 ^a	[BSPy][pTSA]	CH ₃	30.8	53.2	6.5	40.3	1.32
3 ^{1a}	[hexPy][PTSA]	CH ₃	13.4	54.5	8.0	37.5	1.45
4 ^b	[BSPy][HSO ₄]	Cl	34.7	22.5	2.2	75.3	0.30
5 ^b	[BSPy][OTf]	Cl	32.6	19.8	0.5	79.7	0.25
6 ^b	[BSPy] [pTSA]	Cl	16.4	24.3	1.8	73.8	0.33
7 ^b	[BSPy] [HSO ₄]	Н	38.9			-	
8 ^b	[BSPy][OTf]	Н	28.6			-	
9 ^b	[BSPy][pTSA]	Н	15.4	-			
10 ª	-	CH ₃	11.4	57.9	5.7	36.4	1.59
11 ^b	-	Cl	4.5	39.8	0	60.1	0.66
12 ^b	-	Н	8.6			-	

Substrate 10 mmol, NO₂ 0.5 mL; reaction time and temperature

a. -15 °C /30 min, then 0 °C /5 h, and rt/20 h (when the air balloon was removed).

b. -15 °C /30 min, then 0 °C /5 h, and rt/40 h (when the air balloon was removed).

c. Calculated by quantitative GC.

Table 3 Reusability of [BSPy][HSO₄] for nitration of toluene^a

E 4	times	Yield ^b (%)	Prod	Ortho/Dore		
Entry			Ortho	Meta	Para	Ortho/Para
1	1	77.0	54.2	3.3	42.5	1.27
2	2	76.3	53.3	3.9	42.8	1.25
3	3	74.9	54.0	4.4	41.6	1.30
4	4	70.1	53.3	4.8	41.9	1.27
5	5	67.6	53.5	4.2	42.3	1.26

^aSubstrate 10 mmol, -15 °C /30 min, then 0 °C /5 h, and rt/20 h (when the air balloon was removed). ^bCalculated by quantitative GC.

[BSPy][HSO4] has excellent reusability

Conclusion

1. sulfonic acid-functionalized ionic liquid shows good catalytic activity in Nitration of aromatic compounds with NO2/air (77% yield, 1.27 of ratio of o/p)

2. ILs could be conveniently separated with the products and reused for five times with excellent yield of mono-nitration products and paraselectivity. (77% yield, 1.27 of ratio of o/p for the first run; 67% yield and 1.26 of ratio of o/p for the fifth run)

Papers about ionic liquid

- 1. Xiufang Qi, Guangbin Cheng, Chunxu Lu, Desheng Qian. Synthetic Communications, 2008, 38(4): 537~545
- Xiufang Qi, Guangbin Cheng, Chunxu Lu, Desheng Qian. Central European Journal of Energetic Materials, 2007, 4(3): 105~113
- 3. Guangbin Cheng, Xiufang Qi, Chunxu Lu. Central European Journal of Energetic Materials, 2007, 4(4): 59~65
- 4. Xiufang Qi, Guangbin Cheng, Chunxu Lu, Desheng Qian. *Chinese Journal of Applied Chemistry*, 2008, 25(2): 147~151
- Xiufang Qi, Guangbin Cheng, Xuelei Duan, Chunxu Lu, Chinese Journal of Explosive & Propellants, 2007, 30(5):12~15
- 6. Xiufang Qi, Guangbin Cheng, Chunxu Lu, Chinese Journal of Energetic Materials, 2008, 16(4): 398~400
- 7. Xiufang Qi, Guangbin Cheng, Desheng Qian. Chunxu Lu, *Chinese Journal of Applied Chemistry*, 2007, 24(11): 1255~1259
- 8. Xuelei Duan, Guangbin Cheng, Xiufang Qi, Chunxu Lu. Chinese Journal of Applied Chemistry, 2009, 26(2)
- 9. Guangbin Cheng, Xuelei Duan, Xiufang Qi, Chunxu Lu. Catalysis Communications, 2008, 10, 201–204

