Rupture of RDX——A method towards evaluation of the quality of Energetic Crystals

Dr. Ming Li (李明)

Lab of Physics & Mechanics of Materials (LPMM) Lab of Safety & Reliability (LSR) **Institute of Chemical Materials (ICM), CAEP**

December 2010

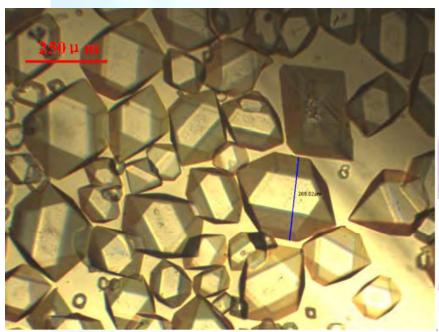
Outline

- Recent advances of RS-Energetic Crystals (ECs) at ICM
- **Defects and Performance of Energetic Crystals (ECs)**
- Ensembles of Energetic Crystals (EEC)

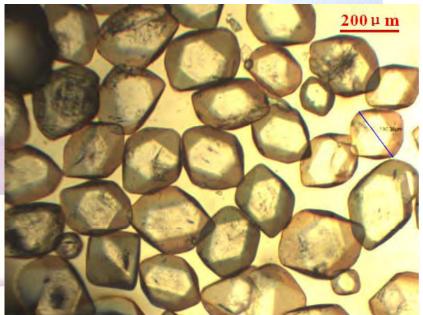
How to differentiate Good and Bad ESCs

A New Method to test Mech. Prop. of EEC

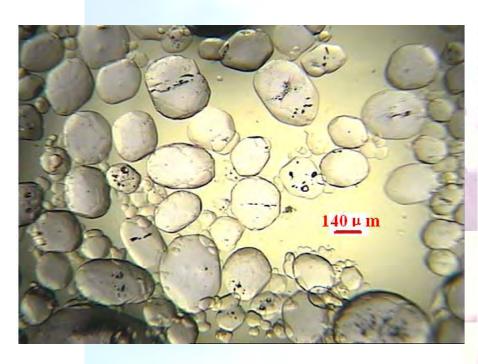
A Bridge between Quasi-static Mech. and Gap tests

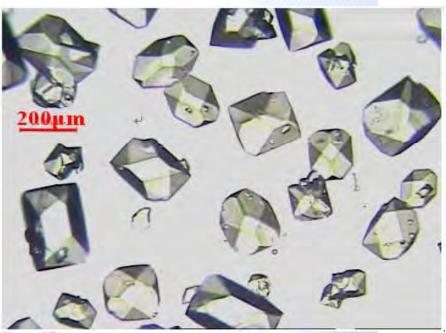

Compared with other methods

□ Summary



Background:

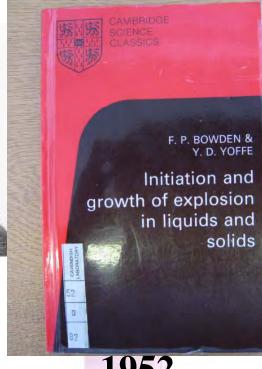

Recent advances of RS-Energetic Crystals (ECs) at ICM


(a)A coarse D-HMX lot composed totally of perfect single crystals within which the twins have been totally eliminated.

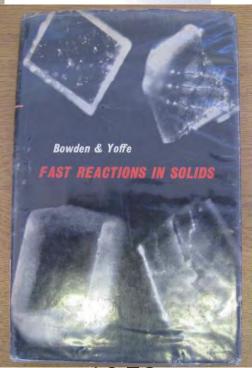
(b) A coarse D-HMX lot composed of spherioidized crystalline crystals

D-RDX crystalline particles

D-CL20X crystalline particles


1 Defects and Performances of ECs

F.P. Bowden (1903 - 1968)

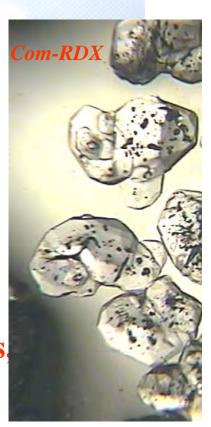

A.D. Yoffe (1919~)

From: http://www.phy.cam.uk

1952

We know very well that "Hot spots" can dramatically sensitize the ECs.

1958


Crystal defects: the sources of the hot spots

Points (0-D, lattice dislocations, etc.)
Lines (1-D, edge dislocations, etc)
Area (2-D,Grain boundaies, microcracks,)
Volume (3-D,gas or liquid inclusions,) important!

from <u>U. Teipel, Energetic Materials, 2005</u>

That is the reason of Why Reduced Sensitivity-ECs, for instance, RS-RDX, RS-HMX, RS- CL20,

Reduce the defects, reduce sensitivity

PMM 安全与可靠性实验室

Baseline Comparisons								
Impact Sensitivity	Sensitivity of neat material to drop impact	These techniques are not expected to show any discrimination between 'norma						
Melting Point - DSC	Impurity level (+ phase changes)							
HPLC	Impurities (including HMX)	and RS-RDX, but are included for the sake of a comprehensive characterization of the starting materials and to assess the						
GC	Impurities (mainly solvent)							
Low Angle Laser Light Scattering	Particle size distribution	robustness of these methods prior to inclusion into STANAG-						
Wet Sieving		4022 Edition 4.						
Discriminators								
Microscopy – matched index fluid	Qualititative analysis of internal crystal defects, etc	Difference in shape of particles; visible difference in number of internal voids and dislocations						
Crystal Density Distribution via Flotation	Individual crystal density distribution	Difference in distribution of particle densities.						
Bulk Density via Pycnometry (Gas and Liquid)	Average crystal density	Difference in average density of particles						
Optional Testing	Property Examined	Possible difference						
Atomic Force Microscopy (AFM)	Analysis of surface defects, etc	RS-RDX may have fewer surface crystal defects						
Nuclear Quadrupole Resonance (NQR) Spectroscopy	Crystal morphology, through analysis of line width	RS-RDX expected to show sharper NQR lines, indicating lower defect level within crystals.						
Microscopic analysis of crystals	Qualitative and semi- quantitative analysis of crystal morphology	Differences in particle morphology/defect density, based on a scoring system						

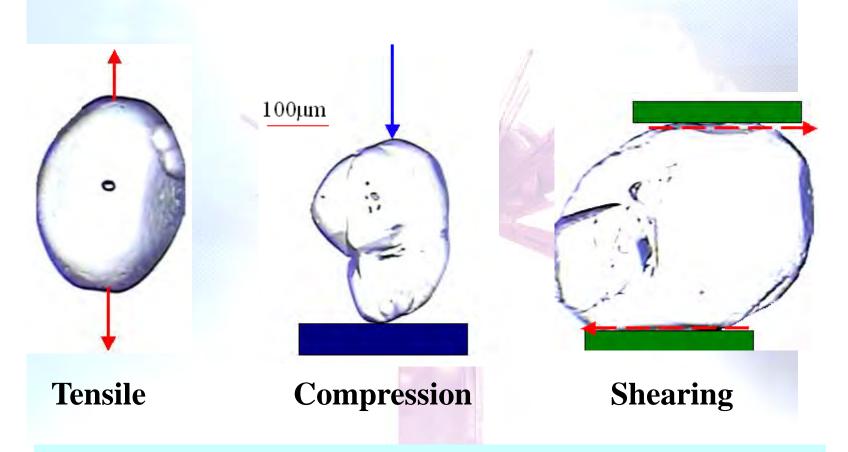
Many methods used to detect the defects of ECs

From:

R. M. Doherty, L. A. Nock and D.S. Watt, Reduced Sensitivity RDX Round Robin Programme-Update (R4), 37th ICT, June 2006.

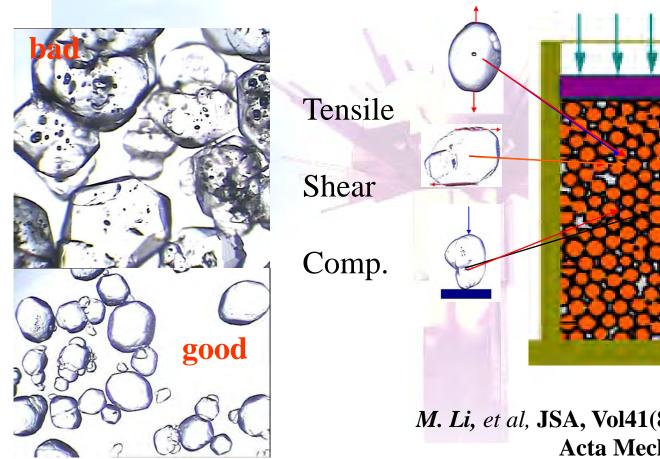
and:

Newsletter, Q2, 2006, NATO, MSIAC, (from Internet WebPages)


These are from the perspectives of **Explosive People**, how about other people?

Defects: the sources that degrade the mechanical properties of Materials—From the perspectives of *Materials/Mechanics People*:

```
Griffith, A.A. (1920), Critical stress/length
Irwin (1948), SIF
Wells (1963), COD
J.R. Rice, G.P. Cherepanov (1967), Jintegral
                                        Cracks
Eshelby (1956), Eigenstrain
                                      inclusion
C.O. Leiber (2000), Coherence Strength
                                Grain boundary
```


Ideal mechanical experiments for single RDX particle

But unpractical!

(maybe for regular shape, i.e., ball particle, it works, as T. Heintz, et al, 39th ICT)

Feasible method—Check the macroscopic response of the ensembles of ECs via pressing.

M. Li, et al, JSA, Vol41(8), 609-622, (2006). Acta Mech. Sin. (2003)

The points of the proposed method:

During the compression, the particles are to be crushed, the more defects insides the particles, the less coherence strength to resist to external force and this would be shown on the compression curves.

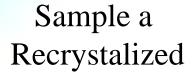
I named this method as Compressive Stiffness Test (CST) and I don't want to call it compressive strength test!

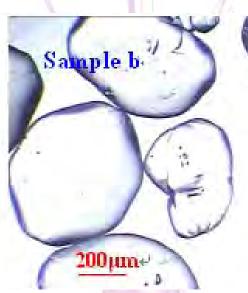
Compression

Compared with hammer speed of about 180m/min in

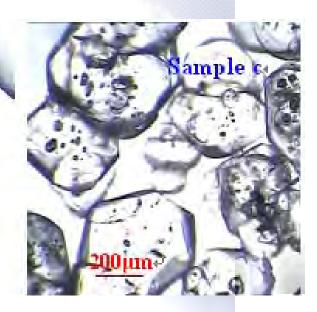
sen. test

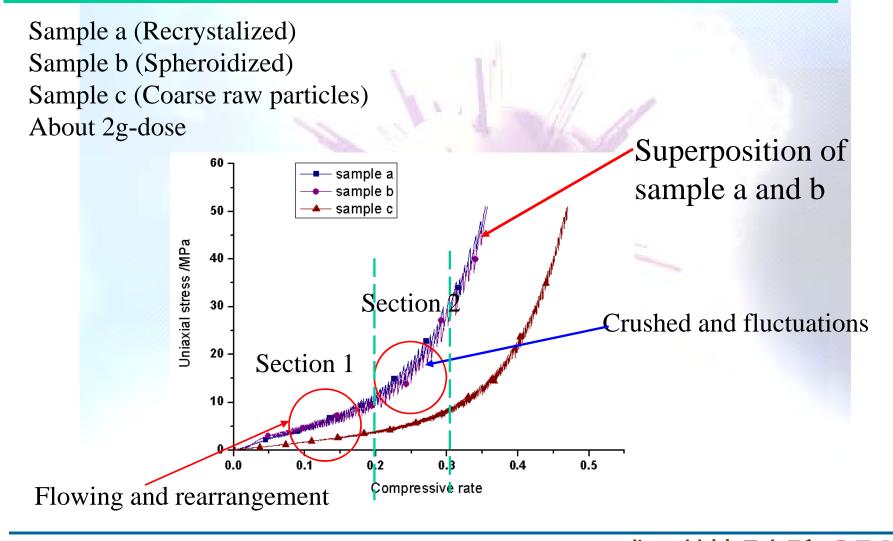
speed:0.05mm/min


Setup of CST- Uniaxial compression

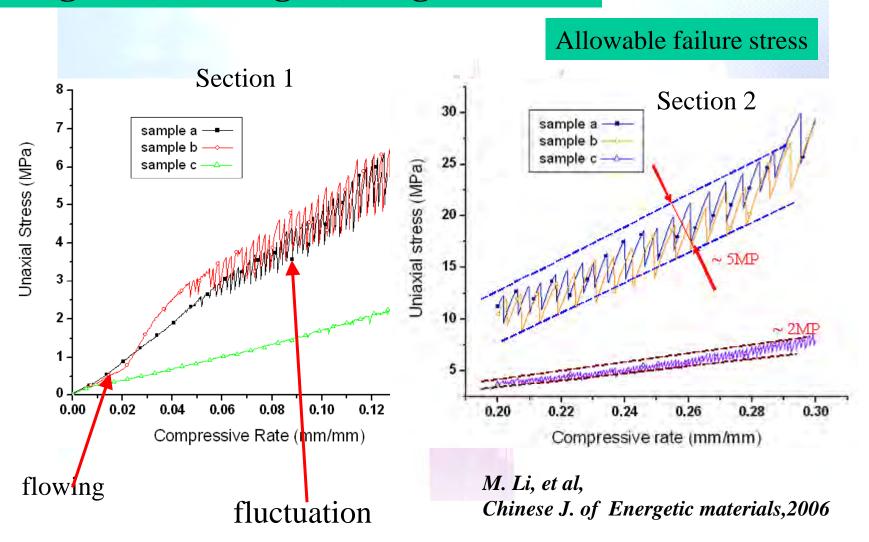

Upper pistol particles base

The sleeve is made of high strength stainless steel in practice using. The internal diameter is 15mm and the thickness of the wall is 10mm.


CST-1(RDX) -Preliminary impression:



Sample b Spheroidized



Sample c Coarse raw particles

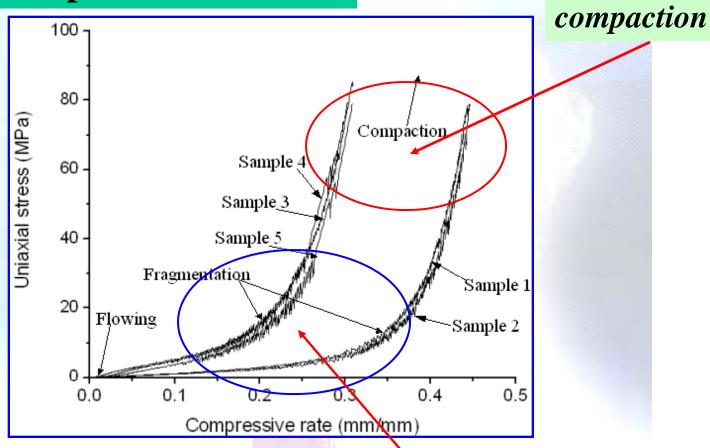
Characteristics of the Compression Curves (Test 1)

Stages-(1) flowing (2) fragmentation

CST-2: (RDX), Gives further details

Lot	Mean size	D_{10}	D ₅₀	D_{90}	source
	μm	μm	μm	/ μm	
1	603.0	172.7	635.9	882.7	commercial
2	536.6	363.9	542.3	720.1	commercial
3	335.0	102.8	332.5	570.9	recrystallized
4	382.8	140.2	375.6	631.2	recrystallized
5	276.4	93.2	283.2	540.5	Recrystallized
		13			+ spheroidized
210	180	63.5	175.3	300.1	commercial

lot 1 above 40 sieve lot 2 between 40~60 screened


RDX raw materials

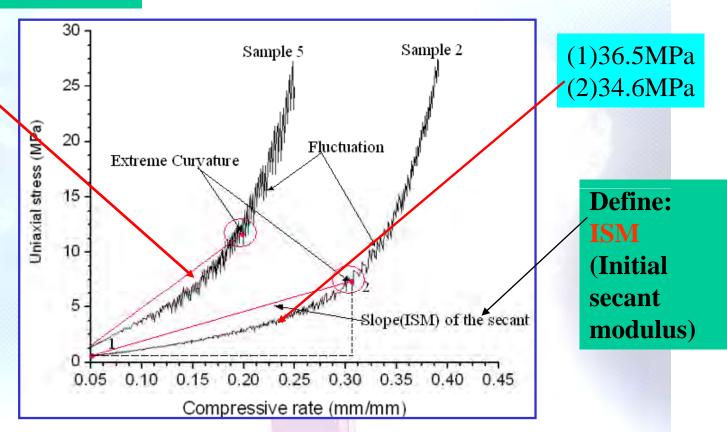
recrystallized Lot3,4,5

Information of five samples in one test group

			/4			
Sample	Mass (g)	H ₀ (mm)	Tap Density (g/cm³)	ISM (MPa)	Apparent — Density (g/cm³)	Range of Apparent Density (g/cm²)
sample 1/lot 1	2.001	12.184	0.929	36.5	_	_
sample 2 Aot 2	2.006	12.194	0.931	34.6	1.7925	1.7866~1.7966
sample 3 Aot 3	1.998	10.036	1.127	85.7	_	_
sample 4 Aot 4	1.999	9.873	1.147	84.8	_	_
sample 5 Aot 5	2.003	10.065	1.126	82.3	1.7992	1.7982~1.7995
sample 6/lot210	2.006	11.085	0.979	45.2	1.7931	1.7887~1.7987
H						

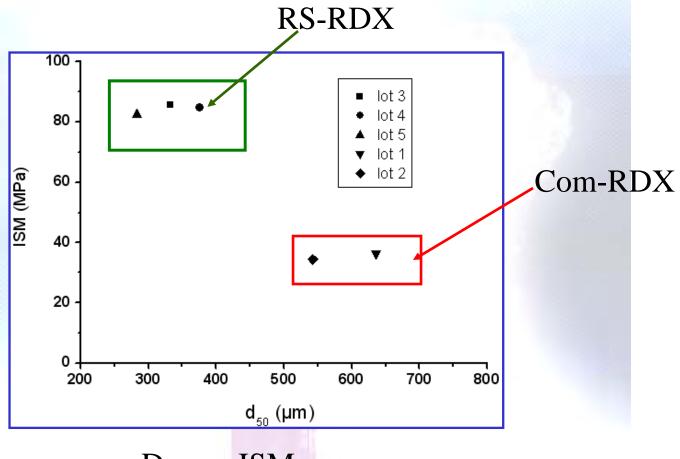
Results-compression curves

Uniaxial stress vs. compressive rate for five types RDX.


fragmentation

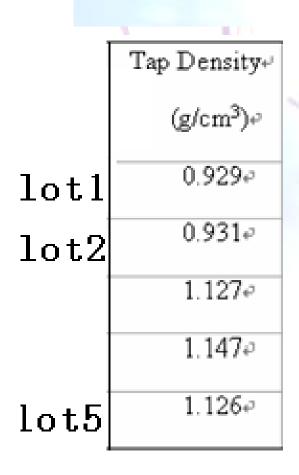
Quantitative method

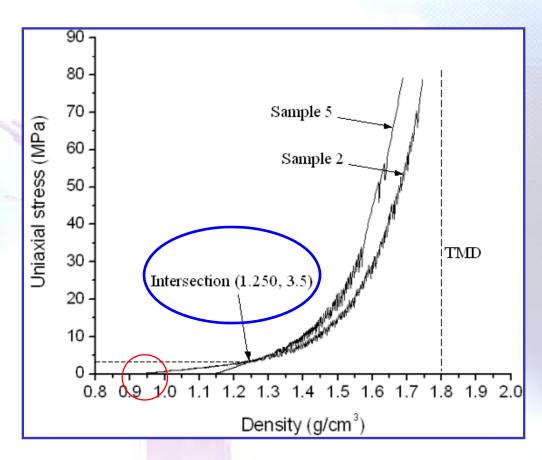
(1)85.7MPa(2)84.8MPa(3)82.3MPa


Note: ISM is different from crystal elastic modulus, See, *M. Li* et,al PEP, (in press) and J. Zaug, 1998

Uniaxial stress vs. compressive rate in fragementation period for sample 5 and sample 2

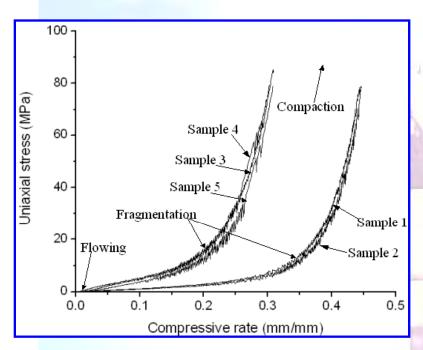
Other than ISM, another method can be found in W.J. Tan, M. Li, H. Huang, CJEP, 2007

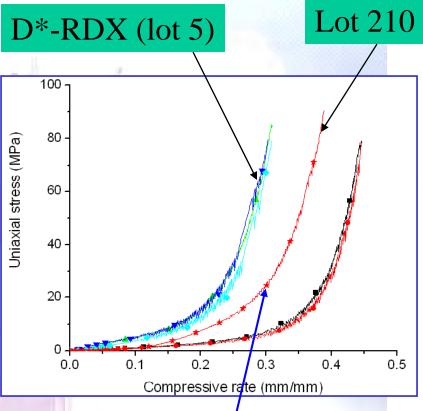

Discussion—Effects of the particles size



 D_{50} vs. ISM

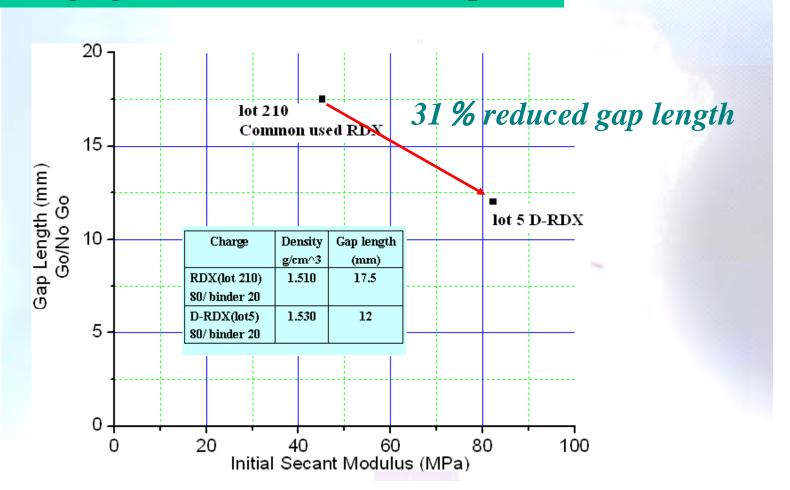
The effects of size on ISMs are very limited! Same with L.Boren(1998,2002)


Discussion—Effects of the tap density



Li Ming et al., PEP., Vol.32(5), 401-405, 2007

What Lot210 shows



Lot 210 medium size raw (ISM=45.2MPa)

* D-RDX developed by ICM

2. Bridging Quasi-static Mech. to Gap tests

ISM vs. Shock sensitivity (Li Ming et al, submitting)

3. Compared with other commonly used methods

- (a) Optical Microscopy with Matched Refractive index Qualitative observation for internal defects
- (b) Density Gradient Tube Quantitative measurement of the particle apparent density (PAD)

OM pictures

D-RDX (lot 5)

lot 1 (coarse raw)

Lot 210 (medium raw)

PAD by DGT

Lot 2 (Coarse): 1.7925(1.7866~1.7966)


*Δ*ρ≈0.001

Lot 210(Medium): 1.7931(1.7887~1.7987)

 $\Delta \rho = 0.0061$

D-RDX (lot 5): 1.7992(1.7982~1.7995)

Note the TMD of **RDX:** 1.806g/cm³

Summary


CST is a very easy and cheaper method which can definitely differentiate/ evaluate the quality of commonly used RDX and RS-RDX(D-RDX here).

The Initial secant modulus (ISM) are defined to quantify the stiffness of the ensembles of the energetic crystals. It shows that the size/shape effects are limited and the major comes from the internal defects.

The results from CST are very consistent with those from OM and DSG and Gap test.

The results from HMX, CL-20 as well as more details related to gap tests will be discussed in the future, hopefully, next Workshop.

