

Professor James Short jshort@umd.edu 301 405-5246

CENTER FOR ENERGETIC CONCEPTS DEVELOPMENT

DEPARTMENT OF MECHANICAL ENGINEERING
A. JAMES CLARK SCHOOL OF ENGINEERING

1970s

Berkeley
UNIVERSITY OF CALIFORNIA

1980s & 1990s

Energetics
Science & Technology
Outside the United States

China

2011 International Autumn Seminar on Propellants, Explosives & Pyrotechnicss

- Experimental methods of detonation physics
- Spectroscopy
- Molecules @ high density
- Clusters of explosive molecules
- Detonation product chemistry
- Intermolecular forces
- Spectroscopy of shocked materials

- Diagnostics of shocked materials
- Diagnostics of detonating materials
- Real-time studies
- Spectroscopy of highly excited molecules

- Energetics synthesis chemistry
 - Organic energetics—
 - CHNOF
 - · Metals & beyond
 - Inorganic energetics
 - All nitrogen & all hydrogen
- Energetic formulation chemistry
- Thermobarics
- Reactive materials
- Fragments that are independently

inert & react when striking target

- Physics & chemistry of reaction
- Gun propellants
- Nanomaterials in formulations
- Energetics manufacturing science
 - Batch processing
 - Extruder (or twin-screw) processing
 - Barriers to scale-up

- Energetics Fundamental Research domains China expects to pursue:
- Theoretical & experimental methods providing fundamental understanding of detonation physics and energetics chemistry.
- Theoretical methods of detonation physics
 - Ab initio intermolecular potentials
 - Dense molecular fluids

- Hydrodynamics
 - Shocked-state measurements
 - Unreacted equations of state
 - Experimental diagnostics of shocked material
 - Shocked state measurements
 - Detonation state measurements
- Computational fluid dynamics

THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

Edited by

LI Shengcai NIU Peihuan

THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

Edited by

LI Shengcai NIU Peihuan

THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

Edited by

LI Shengcai NIU Peihuan

SECTION ONE

- hexa-nitrohexaaza-iso-wurtzitane,
- tetrazines $(C_6N_{12}H_6O_{12})$
- nano-HMX
- FOX-7 ($C_2H_4N_4O_4$)
- furoxan $(C_2H_2N_2O_2)$
- energetic polymers e.g., glycidal azide polymer
- high nitrogen salts
 (e.g., nitro-amino tetrazoles, CH₂N₄)
- lead-free primary explosives

THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

Edited by

LI Shengcai NIU Peihuan

SECTION TWO CHARACTERIZATION AND ANALYSIS

38 papers, 29 Chinese papers

- furoxans $(C_2H_2N_2O_2)$
- HTPB propellants
- ammonium nitrate (NH₄NO₃)
- ammonium perchlorate (NH₄ClO₄)
- ammonium dinitramide $(H_4N_4O_4)$
- characterization of high nitrogen materials
- pyrotechnic materials and molding powders
- thermal decomposition
- effects of aging
- crystal defects
- dynamic fracture

THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

Edited by
LI Shengcai
NIU Peihuan

SECTION THREE COMBUSTION AND DETONATION

81 papers, 53 Chinese papers

- shaped charges
- explosively formed penetrators
- pore collapse initiation
- chain branching reaction mechanisms
- structural integrity of solid rocket propellant

THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

Edited by
LI Shengcai
NIU Peihuan

SECTION FOUR MODELING AND CALCULATION

21 papers, 13 Chinese papers

- "A Microscopic Model Predicting Hot-spot Ignition of Energetic Crystals under Dropweight Impact" by Wu & Huang
- Harold Sandusky & Steve Coffey
- Micro-mechanics model of HMX hot spot ignition in drop-weight impact test
- Meso-scale model
 - particle-particle contact, no sliding friction,
 - contact between particles & anvil
 - sliding friction heating induces plastic deformation & melting along the maximum shear stress faces

THEORY AND PRACTICE OF ENERGETIC MATERIALS

(VOL. IX)

Edited by

LI Shengcai NIU Peihuan

12 papers, 7 Chinese papers

Energetics
Science & Technology
Outside the United States

China

Energetics
Science & Technology
Outside the United States

China

Xi' an Modern Chemistry Research Institute Beijing Institute of Technology Nanjing University of Science & Technology China Academy of Engineering Physics @ Mianyang

(largest chemical energetics research center) (Project 985 Tier 2) (Project 985 Tier 2)

A distant 4th is North University of China

(ordnance, defense industry college)

Followed by
National University of Defense Technology
2nd Artillery Engineering Institute
University of Science & Technology of China
Northwest University @ Xi' an
college)
Southwest University of Science & Technology
213th Research Institute of China
Tianjin University

(Project 985 not Tier 2) (strategic nuclear establishment) (C9 League member, 154th @ US News ranking) (Project 985 not Tier 2, defense indust

(founded in 2000) (armor) (Project 985 not Tier 2)

(nuclear weapon design)

Mesoscale

