Wave Propagation Through Soft Tissue Matter

Marcelo Valdez and Bala Balachandran
Center for Energetic Concepts Development
Department of Mechanical Engineering
University of Maryland
College Park, MD 20742-3035

Acknowledgments: CECD, University of Maryland, College Park, MD; NSWC, Indian Head; University of Maryland School of Medicine, Baltimore, MD
Second Symposium on Traumatic Brain Injury, May 19, 2011
Brain injury mechanisms associated with direct or indirect (sudden acceleration/deceleration) impacts involve relative rigid body motions of the brain with respect to the skull.

• For low speed impacts (relatively large time scale), brain injury mechanisms are governed by rigid body displacements within the skull.

• For high speed impacts (small time scale), deformation of the brain has been proposed as a primary mechanism leading to injury (Hong et al., 2007).

• Shock waves reaching an object result in loading transients involving much shorter characteristic time scales, probably leading to high strain rates as compared to those during impacts conditions (Nyein et al., 2008).

Impact and blast waves promote inherently different brain injury mechanisms.
Brain Tissue and Axon Behavior

• Strain rate levels ranging from 15 sec\(^{-1}\) to 21 sec\(^{-1}\) have been associated with the occurrence of axonal injury. Axonal injury due to bending distortions were experimentally observed for large strain rates; provide evidence for viscoelastic nature of the axonal behavior: Chetta et al. (2010) and Tang-Schomer et al. (2011).

• Numerical simulations of bTBI: Moore et al. (2009), Taylor and Ford (2009) and Nyein et al. (2010); Experimental bTBI: Alley et al. (2011).
Current Work: Overall Aim and Specific Objectives

Overall Aim: Develop a fundamental understanding of the effect of blast waves on the human skull-brain system; in particular, with regard to nonlinear wave propagation in brain tissue and activation of unique brain injury mechanisms.

Specific Objectives:

- Develop reduced-order models to study wave propagation along brain fibers to complement complete full model studies being conducted at NSWC, Indian Head. Understand the influence of nonlinear material properties on wave propagation in soft tissue.

- Obtain fundamental insights into the propagation of mechanical (stress/strain) waves along brain fibers. Link frequency content and amplitude of external loading with the occurrence of injury at different length scales (brain fibers, axons, and so on). Use this analysis to determine appropriate loading amplitudes and frequencies for experiments that attempt to replicate blast loading conditions at UMD and UMB.

- Integrate medical imaging (MRI and CT scans), nonlinear material constitutive models, and finite element analysis.
Which **frequency components** and **amplitude levels** of external loading favor energy localization?

Can we link the predictions on wave propagation along brain fibers with the occurrence of injury?

Can the model predictions guide the choice of **appropriate loadings** (amplitude and frequency) in **brain tissue experiments** so that a particular phenomenon is observed?
Wave Propagation in Brain Fibers

Governing Equation

\[\rho_0 \frac{\partial^2 \chi}{\partial t^2} = \frac{\partial P}{\partial X} \]

- \(P \): uniaxial first Piola-Kirchhoff Stress
- \(\rho_0 \): original density

- Uniaxial deformation gradient
 \[F = \frac{\partial \chi}{\partial X} = \lambda \quad \text{: Stretch ratio} \quad 0 < \lambda \]

- Hyper-elastic Long term behavior
 \[P = \frac{\Psi(l)}{l} \]
 \(\Psi \): Material Strain Energy Function

Reference Configuration

\[P_B(t) = - P_0 \sin(wt) \]

Current Configuration

\[x = c(X, t) \]

Nonlinear Viscoelastic Constitutive Equation

\[l\dot{\epsilon} = \frac{dl}{dt} = - k \left(\frac{\epsilon^2}{l} \right) \frac{\dot{\epsilon}^2}{l} - P\ddot{\epsilon} \quad (*) \]

\[k > 0 \quad \text{: Relaxation Modulus} \]

Wave Propagation in Brain Fibers

Governing equations

\[\rho_0 \frac{\partial^2 \chi}{\partial t^2} = \frac{\partial P}{\partial X} \]

\[\zeta = -k \left[g(\lambda) \right]^2 \left[f(\lambda) - P \right] \]

\[\frac{\partial \chi}{\partial X} = \lambda \]

Boundary Conditions

\[c(0,t) = 0 \]
\[P(L,t) = P_B(t) \]

Initial Conditions

\[c(X,0) = 0 \]
\[\frac{\partial c(X,0)}{\partial t} = 0 \]

\[f(l) = \frac{\partial Y}{\partial l} \]
\[g(l) = \frac{\partial^2 Y}{\partial l^2} \]

\(\Psi \) : Material strain energy function

e.g., Incompressible Mooney-Rivlin Hyper-elastic model

\[Y(l) = c_1 \left(l^2 + 2l^{-1} - 3 \right) + c_2 \left(l^{-2} + 2l - 3 \right) \]
Wave Propagation in Brain Fibers: Linear Model Predictions

• Strain Energy Function

\[Y(l) = \frac{1}{2} E(l - 1)^2 \]

Nondimensionalization of variables

\[v = \frac{c - X}{L} \quad x = \frac{X}{L} \quad t = \frac{t}{L/c_0} \]

\(v \): Nondimensional displacement
\(t \): Nondimensional time
\(x \): Nondimensional space

\[c_0 = \sqrt{\frac{E}{r_0}} : \text{Wave speed} \]

\[a = \frac{Ec_0}{kL} @ \frac{\dot{e}}{\ddot{e}} : \text{Dissipation time scale} \]

\[\frac{\ddot{e}}{\ddot{e}} : \text{Wave propagation time scale} \]
Wave Propagation in Brain Fibers: Linear Model Predictions

• Exponential Solution

\[v(x, t) = e^{-A(\overline{w})\sin(1/2f)x} e^{iA(\overline{w})\cos(1/2f)x} t^{\frac{1}{4}} + c(\overline{w})t^{\frac{1}{4}} \]

\[\bar{\omega} = \frac{\omega L}{c_0} : \text{Nondimensional frequency} \]

\[A(\overline{w}) = \frac{\overline{w}}{(1 + \overline{w}^2 a^2)^{\frac{1}{4}}} \]

\[f(\overline{w}) = - \tan^{-1}[a \overline{w}] \]

\[c(\overline{w}) = \frac{\sqrt{2}(1 + a^2 \overline{w}^2)^{\frac{3}{4}}}{(2 + \overline{w}^2 a^2)^{\frac{1}{2}}} \]

Lower Frequency Bound equation

\[l_{\text{max}} = \frac{1}{2pc(\overline{w})}P \quad f(a) = \frac{\overline{w}_{\text{LB}}(a)}{2p} \]

\[L = 10 \text{ mm} - 170 \text{ mm} \quad c_0 \gg 1500 \text{ m/sec} \quad k = \text{?} \quad a = \text{?} \]
Effect of forcing frequency and forcing amplitude on the transient (wave propagation) response

\[P_B(t) = -P_0 \sin(\omega t) \]

Stress time histories at the half section of the fiber

\[\omega = 0.5\pi \]

\[\omega = 0.75\pi \]
For \(\alpha \), transients are quickly dissipated as the frequency increases. For this case, linear and non-linear solutions become similar for all the amplitude load values analyzed.

For large value of the amplitude load, there are discontinuous jumps as a consequence of both steepening of the waves (leading to shock formation) and interaction between incoming and reflected waves at the boundaries.

Increasing dissipation increases the speed of propagation of the system.

For \(\alpha = 1 \), transients are quickly dissipated as the frequency increases. For this case, linear and non-linear solutions become similar for all the amplitude load values analyzed.

For large value of the amplitude load, there are discontinuous jumps as a consequence of both steepening of the waves (leading to shock formation) and interaction between incoming and reflected waves at the boundaries.

Time instant when the stress wave reaches the section
Wave Propagation in Brain Fibers

\[\omega = 0.5\pi \quad \alpha = 0.01 \quad P_0 = 0.1 \]

Stress Contours

\[\frac{X}{L} = 1 \]

Stress time history

\[\frac{X}{L} = 0.75 \]

Stress time history

\[\frac{X}{L} = 0.25 \]

Stress time history

\[\frac{X}{L} = 0.5 \]

Stress time history
Wave Propagation in Brain Fibers

\[\omega = 2\pi \quad \alpha = 0.01 \quad P_0 = 0.4 \]

\[\frac{X}{L} = 1 \]

\[\frac{X}{L} = 0.75 \]

\[\frac{X}{L} = 0.25 \]

\[\frac{X}{L} = 0.5 \]
Wave Propagation in Brain Fibers

\[\omega = 0.5\pi \quad \alpha = 0.01 \quad P_0 = 0.1 \]

Stress as a function of position
Wave Propagation in Brain Fibers

$\omega = 0.5\pi$

$\alpha = 0.01$
$P_0 = 0.01$

$\alpha = 0.1$
$P_0 = 0.1$

$P_0 = 0.4$
Wave Guide Models & Neuron Cell Structure

Uniform rod model of an axon

Non-uniform, transversely isotropic rod model of an axon

Source: en.wikipedia.org/wiki/Neuron
Summary and Future Directions

- Nonlinear viscoelastic models needed for explaining experimental response data collected with brain tissue
 - Response depends on loading characteristics: frequency and amplitude

- Reduced-order models have been developed to study the response of rigid structures supported by soft matter and skull-brain system. Wave propagation phenomena in homogeneous and non-homogeneous fiber structures have been studied and energy localization behavior has been observed.
 - Evidence for high strains in the response shown
 - Transient response of the nonlinear material is highly affected by the amplitude of the load, the frequency components of the load and the dissipation of the soft tissue. Therefore, accurate determination of the material properties of soft tissue is crucial for developing models that capture transient nonlinear effects
 - Better understanding of energy localization can help identify vulnerable areas

- Future work to focus on further developing the reduced-order models and understanding wave phenomena in skull-brain system in conjunction with other computational modeling efforts (NSWC-Indian Head) in three-dimensional cases and guiding experiments at UMD & UMB to obtain information on model response as well as soft tissue properties.