2nd Symposium on TBI, University of Maryland, 19 May 2011

Dynamic Mechanical Response of Brain Tissues

Weinong Wayne Chen

Schools of Aeronautics/Astronautics and Materials Engr. Purdue University, West Lafayette, IN (765) 494-1788, wchen@purdue.edu

Collaborators:

Tusit Weerasooriya Steve Son Eric Nauman Riyi Shi Farhana Pervin Xu Nie Brett Sanborn Yun Ge

Γ

Lindholm, 1964

Some of the Kolsky Bars at Purdue

Non-Uniform Loading on Soft Specimens

Non-homogeneous Deformation

- Uniform deformation along specimen thickness
- Related to dynamic stress equilibrium in most cases

Two-dimensional Effects in the Specimen

- Friction effect
- Radial inertia in specimen

Dynamic Characterization of Soft Materials

PURDUE

Modified Kolsky Bar for Soft Materials

Some Tissues Dynamically Characterized

Muscles under compression and tension

Lungs

Tendons under tension

Kidneys

Dynamic Properties of Gray and White Matters

Scatter in Response of Bovine Gray Matter

Brain Tissues from Different Animals

Brain Tissue Lateral Deformation

Specimen dimension:

- φ10 mm outer diameter
- φ5 mm inner diameter
- 1.7 mm thickness

Camera frame rate: 50,000 fps

A Washer-shaped Gel Specimen under Compression

Strain Rate ~2,000/s G ~ 5 MPa 66% Peak Axial Strain

Strain Rate ~2,000/s G ~ 200 kPa

Disturbances in Measured Axial Stresses

$$\begin{array}{cccc}
& \rho & \varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] & \sigma_{y} = \sigma_{z} = p \\
& \leftarrow & = \frac{1}{E} \left(\sigma_{x} - p \right) & \nu \approx 0.5 \\
\end{array}$$
Ideally, $p \sim 0$

$$\begin{array}{cccc}
& \rho & \sigma_{x} = E \varepsilon_{x} + p \\
\hline
& & & & & & \\
\hline
& & & & & & \\
\hline
& & & & & & \\
\hline
& & & & \\
\hline
& & & & & \\
\hline
& & & & \\
\hline$$

	$E\varepsilon_x$	р	$p/E\varepsilon_x$
Aluminum	3.5 GPa	~7 MPa	0.002
Plexiglass	0.2 GPa	~3 MPa	0.015
Soft Tissue	1.1 kPa	~2 MPa	1800

 $\varepsilon_x = 5\% = 0.05$

Inertia pressure (Forrestal and Warren, 2010)

$$\overline{p} = \frac{3\rho a_o^2}{16(1-\varepsilon_x)^3} (\dot{\varepsilon}_x)^2 + \frac{\rho a_o^2}{8(1-\varepsilon_x)^2} \ddot{\varepsilon}_x$$

Kolsky Torsion Bar for Dynamic Shear Response

Kolsky Torsion Bar for Dynamic Shear Response

- Dynamic shear response under torsional loading
 - ✓ No radial-inertia effect.
 - ✓ No stress concentrations at the edges.
 - ✓ Pure shear properties of the material at high rates.
- "Desk-top" Kolsky torsion bar setup

High-speed Imaging of Deformation

Dynamic Shear Stress-Strain Responses

Shear Strain

0.16

0.20

Ring-shaped Specimen

O.D.=19 mm I.D.=14.3 mm Thickness=2 mm

Dynamic Shear Strain Rate and Strain

Dynamic Stress-Strain Curves

A Comparison of Axial/Shear Responses

PURDUE ENGINEERING

- Uniaxial brain tissue compression experiments too sensitive to disturbances.
- Necessary to separate volumetric and shear responses.
- Novel dynamic shear experimental methods developed, calibrated, and used for brain tissue characterization.

