Advanced Energetic Material Synthesis

David E. Chavez

Los Alamos National Laboratory

April 5th, 2011

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

Outline

- Holy Grail Question
- Paths Foward
- Emerging Technologies
- Efficient Screening Methods
- Small-Scale Testing Investment
- Past Investments
- Material Selection

Holy Grail?

Answer is Needed

- Justify Investment
- Results-based science funding
- There is a metrics-based answer
- Is this a "right" question
 - Too many different application
 - Certainly not for propellants
 - Molecule centric
- What might be a better question?
 - Capability-centric, High-Level viewpoint
- Breakthrough Technologies
 - Always inspired through basic research
 - Not necessarily "planned"

EM Research Funded Last 50 years: Results?

- Answer from a molecule standpoint:
 - •Justification requirements have increased over time
 - Shows the difficulty of the field
 - EM Chemist are fighting a losing battle
- Answer From a Material Standpoint
 - Gun Propellant improvements
 - Reactive Materials, MIC, IM
- Answer From Capability Viewpoint
 - Modeling and Simulation
 - National capability to address national security
- Historical Goals and Objectives
 - More successful from a materials viewpoint
 - Less so from a molecule viewpoint

Paths Forward

- View EM as Materials
- Training and Mentoring
- Consider overall cost
 - Reduced environmental clean up costs
 - Improved safety for troops
- Paradigm Shifts in Energetics?
 - Autonomous Systems change the game
 - Example: Structural Energetics
- New Concepts in Materials Properties

Strategic Approach to EM Development

- Synthesize molecules tailorable for different applications through chemical specialization
- RDX is a current example of one material being used in both maincharge and propellant formulations
- Advantage of reduced infrastructure for HE production

Emerging Technologies

Tunable materials (on/off materials)

- Can we control sensitivity
- Optical tuning
- Other methods

Drug Discovery Capabilities

- Co-crystallization
- Modification of sensitivity

Microreactor Technology

- Ease of Scale-up
- Heat/volume concerns reduced

Liquid Crystalline Explosives

Sensitivity control through liquid crystalline properties?

NO₂

Millar, R. et al., 2008, patent application, WO2008/102111A2

Co-Crystallization to adjust sensitivity

-FTDO has sensitivity similar to Lead Azide -FTDO forms a co-crystal with DNAP -Studies on the sensitivity of the co crystal have been done

Zarko, V. E.; Simonenko, V. N.; Kalmykov, P. I.; Kvasov, A. A.; Chesnokov, E. N.; Kuper, K. E. Combustion,

Explosion and Shock Waves, 2009, 45, 752.

Tetrazine On/Off Co-Crystallization

Redox controlled on/off switching

Clavier, G, et al., Chem. Rev. 2010, 3299

-Literature precedent for on/off complexation switching -Can we use a similar concept for on/off sensitization?

On/Off Fluorescence switching

- -Tetrazines are highly colored and small
- -Tetrazines are energetic
- -Tetrazines are highly electroactive
- -Studies have shown that tetrazine fluorescence can be turn on/off electronically

An on/off fluorescent window made from a tetrazine compound

Clavier, G, et al., Chem. Rev. 2010, 3299

New Material Issues

Transition of Materials

- Scale-up
- Funding to transition
- Small-Scale Tests
 - More small scale testing needed
 - Justification for scale-up
- Environmental Fate and Toxicity
 - When should materials be tested
 - Predictive capability
- Safety, Aging and Life Cycle Concerns
 - Small-scale methods

Technical Limitations

- Availability of Small-Scale Tests
 - Justification needed to invest in scale-up
 - Tests need to reliably estimate large scale
- Energy/Sensitivity Tradeoff
 - Need to justify investment
- Scale-up Capability
 - Synthesis and scale-up
- Aging and Life Cycle Concern
 - Small-scale methods

Efficient Screening Methods

Need small scale test methods

Modeling and simulation to extrapolate

Chemical compatibility

- Need rapid methods to identify incompatibility
- Need rapid aging test methods

Newer techniques

- Rapid environmental testing capability
- Needs to be relatively inexpensive

Small Scale Testing Investment

- Rapid, cheap, safety and performance testing
 - Need small scale test methods
 - Need info. on performance
 - Need info. on shock sensitivity, materials properties
 - Modeling and simulation to extrapolate
- Mapping small scale to large scale phenomenon
 - Test which extrapolate from small to large scale
 - Must be fast and inexpensive

Past Investments

Many Materials Have Been Synthesized

- Did not meet requirements
- Difficult to Synthesize
- Reinvestigation is Worthwhile
 - Environmental Considerations
 - New Synthesis Techniques
- Critical Information
 - Transfer of Prior Knowledge is Key
 - Must not repeat
- Example: Synthesis of DAAF

Synthesis of DAAF

Impurity identification

New Approach to DAAF

DSC: pH Comparison

Purity Effect on ODTX

Figure A-2. ODTX comparing DAAF 2006 to DAAF from 1997-1998 along with other common explosives

Courtesy of J. Maienschein (LLNL)

Material Selection

Novel materials

- High Risk/ High Payoff
- Requires long term investment

On/Off switchable materials

- High Risk/ High Payoff
- Long term investment

Ease of Synthesis

- 3 steps of fewer
- Environmentally Friendly
- No energetic intermediates

Acknowledgments

Synthesis: Philip Leonard, Isaac Mares, Colin Pollard, Elizabeth Francois

Characterization:

Mary Sandstrom, Jose Archuleta, Anna Giambra

