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Holy Grail?

• Answer is Needed

• Justify Investment 

• Results-based science funding

• There is a metrics-based answer   

• Is this a “right” question

• Too many different application

• Certainly not for propellants

• Molecule centric 

• What might be a better question?

• Capability-centric, High-Level viewpoint

• Breakthrough Technologies

• Always inspired through basic research

• Not necessarily “planned” 
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EM Research Funded Last 50 years: Results?

• Answer from a molecule standpoint: 

•Justification requirements have increased over time

• Shows the difficulty of the field

• EM Chemist are fighting a losing battle

• Answer From a Material Standpoint

• Gun Propellant improvements

• Reactive Materials, MIC, IM

• Answer From Capability Viewpoint

• Modeling and Simulation

• National capability to address national security

• Historical Goals and Objectives

• More successful from a materials viewpoint 

• Less so from a molecule viewpoint
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Paths Forward

• View EM as Materials

• Training and Mentoring 

• Consider overall cost 

• Reduced environmental clean up costs

• Improved safety for troops

• Paradigm Shifts in Energetics?

• Autonomous Systems change the game

• Example: Structural Energetics 

• New Concepts in Materials Properties
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Strategic Approach to EM Development

• Synthesize molecules tailorable for different applications through 

chemical specialization

• RDX is a current example of one material being used in both main-

charge and propellant formulations

• Advantage of reduced infrastructure for HE production 

Formulation

Propellant

Main Charge

Dense press

Burn-rate Modifier

High-N salt formation

Metal salt formation 

Primary
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Emerging Technologies 

• Tunable materials (on/off materials)

• Can we control sensitivity

• Optical tuning

• Other methods

• Drug Discovery Capabilities

• Co-crystallization

• Modification of sensitivity

•Microreactor Technology

• Ease of Scale-up

• Heat/volume concerns reduced
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Liquid Crystalline Explosives

Millar, R. et al., 2008, patent application, WO2008/102111A2
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Sensitivity control through liquid crystalline properties?
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Co-Crystallization to adjust sensitivity
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-FTDO has sensitivity similar to Lead Azide

-FTDO forms a co-crystal with DNAP

-Studies on the sensitivity of the co crystal have been done

Zarko, V. E.; Simonenko, V. N.; Kalmykov, P. I.; Kvasov, A. A.; Chesnokov, E. N.; Kuper, K. E. Combustion,

Explosion and Shock Waves, 2009, 45, 752.
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Tetrazine On/Off Co-Crystallization
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Redox controlled on/off switching

Clavier, G, et al., Chem. Rev. 2010, 3299

-Literature precedent for on/off complexation switching

-Can we use a similar concept for on/off sensitization?
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On/Off Fluorescence switching

-Tetrazines are highly colored and small

-Tetrazines are energetic

-Tetrazines are highly electroactive

-Studies have shown that tetrazine 

fluorescence can be turn on/off

electronically

An on/off fluorescent window made from a tetrazine compound

Clavier, G, et al., Chem. Rev. 2010, 3299
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New Material Issues

• Transition of Materials

• Scale-up 

• Funding to transition

• Small-Scale Tests

• More small scale testing needed

• Justification for scale-up

• Environmental Fate and Toxicity

• When should materials be tested

• Predictive capability 

• Safety, Aging and Life Cycle Concerns

• Small-scale methods
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Technical Limitations

• Availability of Small-Scale Tests

• Justification needed to invest in scale-up 

• Tests need to reliably estimate large scale

• Energy/Sensitivity Tradeoff

• Need to justify investment 

• Scale-up Capability

• Synthesis and scale-up 

• Aging and Life Cycle Concern

• Small-scale methods 
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Efficient Screening Methods

• Need small scale test methods

• Modeling and simulation to extrapolate 

• Chemical compatibility

• Need rapid methods to identify incompatibility

• Need rapid aging test methods

• Newer techniques

• Rapid environmental testing capability

• Needs to be relatively inexpensive
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Small Scale Testing Investment

• Rapid, cheap, safety and performance testing

• Need small scale test methods

• Need info. on performance

• Need info. on shock sensitivity, materials properties

• Modeling and simulation to extrapolate 

• Mapping small scale to large scale phenomenon

• Test which extrapolate from small to large scale

• Must be fast and inexpensive
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Past Investments

• Many Materials Have Been Synthesized

• Did not meet requirements

• Difficult to Synthesize

• Reinvestigation is Worthwhile

• Environmental Considerations

• New Synthesis Techniques

• Critical Information

• Transfer of Prior Knowledge is Key

• Must not repeat

• Example: Synthesis of DAAF
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Synthesis of DAAF
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Impurity identification

Nitrosoamino 

furazan

Aminonitro 

furazan

Hydroxylamino 

furazan (?)

Unknown impurity
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New Approach to DAAF 
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DSC: pH Comparison
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Purity Effect on ODTX

Courtesy of J. Maienschein (LLNL)
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Material Selection

• Novel materials

• High Risk/ High Payoff

• Requires long term investment

• On/Off switchable materials

• High Risk/ High Payoff

• Long term investment

• Ease of Synthesis

• 3 steps of fewer

• Environmentally Friendly

• No energetic intermediates
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