



## **Karl Christe and Ralf Haiges**

#### Loker Research Institute University of Southern California



Army Workshop, University of Maryland



## **Coworkers and Sponsors**







3-6 April, 2011



Army Workshop, University of Maryland











- High-Oxygen Carriers as Green Replacements for AP and Hydrazine (ONR)
- Polyazide Chemistry (NSF)
- Polynitrogen Chemistry (AFOSR/DARPA)
- Dense High-Energy Materials for Agent Defeat (DTRA)



## **ONR Programs and Why Are We** Interested in High-Oxygen Carriers?



 Compounds currently used for solids and their drawbacks: NH<sub>4</sub>ClO<sub>4</sub>, (Ammonium Perchlorate, AP), halogen containing combustion product (HCl) NH<sub>4</sub>N(NO<sub>2</sub>)<sub>2</sub>, (Ammonium Dinitramide, ADN), thermal stability problems NH<sub>4</sub>NO<sub>3</sub>, (Ammonium Nitrate, AN), burning rate problems

- Currently used liquid monopropellant: Hydrazine, carcinogen and low Isp
- Goal of this Study:
  - Replacement of ClO<sub>4</sub><sup>-</sup>, N(NO<sub>2</sub>)<sub>2</sub><sup>-</sup>, or NO<sub>3</sub><sup>-</sup> anions by a green, thermally stable, high performing novel anion which carries a very large excess of oxygen and can oxidize large amounts of metal and binder in solids or large organic cations in ionic liquids.
  - Finding a green, high-performing replacement for AP has been pursued for a century, but the problem has not been solved as yet.





- Combine a fuel cation with a complex anion which carries a large excess of oxygen, does not contain any halogen and has a large positive heat of formation
- Use crystal engineering to prepare either a high-melting solid (small hard cation) for AP replacement or a lowmelting ionic liquid (large asymmetric soft cation) for hydrazine replacement
- Synthesize and characterize the complex high-oxygen anions and combine them with suitable cations.
- Study the stability and properties of the resulting salts and evaluate their performance







- Prepared and characterized solid and ionic-liquid tetranitrato-borate salts but the thermal stability of the tetranitrato-borate anion was insufficient.
- Replaced the boron central atom by aluminum which improved the thermal stability.
- Increased the energy content of the cation by replacing imidazolium cations by tetrazolium cations.
- Prepared with 4-ethyl-1,5-dimethyl-tetrazolium tetranitrato-aluminate (TTNA) a high performing (*Isp* 280 – 290 sec) ionic-liquid monopropellant.
- Carried out successful ignition tests with TTNA.
- However, the long-term stability of these salts was still insufficient due to the relatively weak M-O-NO<sub>2</sub> linkage of the nitrato anions.
- Initiated efforts to replace the weak M-O-N linkage by stronger B-N or B-C bonds.
- Successfully prepared and characterized by "Umpolung" reactions several B(NX)<sub>4</sub><sup>-</sup> skeletons which are ideal precursors for the synthesis of the B(NO<sub>2</sub>)<sub>4</sub><sup>-</sup> anion.
  Army Workshop, University of Maryland





- This anion would hold great potential for an ionic liquid monopropellant and also as a green replacement for AP.
- Theoretical calculations predict  $B(NO_2)_4^-$  to be vibrationally stable and allow to estimate the heat of formation ( $\Delta_f H^0_{298} = -613 \text{ kJ/mol}$ ) and density ( $\rho = 1.79 \text{ g/cm}^3$ ) of Ammonium TetranitroBorate, (ATNB), NH<sub>4</sub>B(NO<sub>2</sub>)<sub>4</sub>.
- Specific Impulse calculations with the Cheetah program 4.0 for optimized propellant formulations using either aluminum or alane as a fuel and hydroxyterminated polybutadiene as a binder predict ATNB to deliver an I<sub>sp</sub> (in sec) comparable to that of AP.

|      | AI                 | AIH <sub>3</sub> |
|------|--------------------|------------------|
| ATNB | 259 (15.3% binder) | 278 (9.1% binder |
| AP   | 266 (11.3% binder) | 279 (9% binder)  |





- Direct synthesis of B(NO<sub>2</sub>)<sub>4</sub><sup>-</sup> from BCl<sub>4</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> ions not possible because the negative charge in NO<sub>2</sub><sup>-</sup> is on the oxygen atoms, resulting in the formation of nitrito compounds with weak B-O-NO bonds.
- Our approach is based on "Umpolung" reactions using NX ligands in which the negative charge is on the nitrogen atom. This allows us to construct B(NX)<sub>4</sub><sup>-</sup> skeletons:

$$BCI_4^- + 4 NX^- \rightarrow B(NX)_4^- + 4 CI^-$$

In a subsequent reaction, the N-X bonds could be oxidatively cleaved with ozone or peroxide to give the desired tetranitro compound:

 $B(NX)_4^- + 8O_3 \rightarrow B(NO_2)_4^- + 8O_2 + 4X$ 









- Have synthesized and characterized the following [B(NX)<sub>4</sub>]<sup>-</sup> skeletons: [B(NCO)<sub>4</sub>]<sup>-</sup>, [B(NCS)<sub>4</sub>]<sup>-</sup>, [B(N<sub>3</sub>)<sub>4</sub>]<sup>-</sup>, and [B(imidazolate)<sub>4</sub>]<sup>-</sup>.
- Cleavage experiments of the latter two skeletons using ozone, HOF, RuO<sub>4</sub>, PbO<sub>2</sub>, basic peroxide, or acid have been studied.
- Ozonization of [B(imidazolate)<sub>4</sub>]<sup>-</sup> produced the tetrakis-bis-formyl amido borate anion.
- Attempts to cleave the tetrakis-bis-formylamidoborate anion were unsuccessful.







- The ozonisation of the [B(N<sub>3</sub>)<sub>4</sub>]<sup>-</sup> produced only NO<sub>3</sub><sup>-</sup> and borate.
- The tetraazidoborate was then converted into a phosphazene and then ozonized.

 $Li[B(N_3)_4] + 4 PMe_3 \rightarrow Li[B(N=PMe_3)_4] + 4 N_2$ 

- The ozonization of the phosphazene gave again only nitrate and borate.
- The reactions of the phosphazene and the azide with HOF produced  $BF_4^-$  and again  $NO_3^-$ .





 We prepared the tetraisothiocyanoborate-anion by treatment of BCl<sub>3</sub> with an excess of KSCN in THF:

 $BCI_3 + 4 \text{ KSCN} \rightarrow \text{K}[B(NCS)_4] + 3 \text{ KCI}$ 

• We also prepared the  $[B(N(SO_2CF_3)_2)_4]^-$  anion:

 $BH_4^- + 4 H(SO_2CF_3)_2 \rightarrow K[B(NSO_2CF_3)_2)_4] + 4 H_2$ 

- Cleavage reactions of these two anions will be investigated.
- We are also working on the synthesis of [H<sub>2</sub>NB(NMe<sub>2</sub>)<sub>3</sub>]<sup>-</sup> as an alternate precursor for the oxidative cleavage reactions.





- To circumvent the difficulties with the oxidative cleavage reactions, we have also pursued alternative concepts.
- We have found that the B(DNT)<sub>4</sub><sup>-</sup> anion offers numerous advantages. It promises superior performance and better stability and, synthetically, should be more readily accessible.







• Performance calculations for  $NH_4DNTB$ :

 $\Delta_f H^0 = 138.9 \text{ kcal/mol}$   $\rho = 1.74 \text{ g/cm}^3$ max *lsp* of aluminized propellant approximates that of AP



#### Syntheses of Dinitrotriazolatoborate Salts





Potassium (3,5-dinitro-1,2,4-triazolate)







 Reaction of MBH<sub>4</sub> with an excess of HDNT in diethylether at ambient temperature replaced only two of the four hydrogens (conditions, conditions, conditions):

 $M[BH_4] + 4 HDNT \rightarrow M[BH_2(DNT)_2] + 2 H_2 + 2 HDNT$ 

• The Li<sup>+</sup> salt exploded in dry box without provocation, but the Na<sup>+</sup> and N(CH<sub>3</sub>)<sub>4</sub><sup>+</sup> salts were found to be stable. N(CH<sub>3</sub>)<sub>4</sub>[H<sub>2</sub>B(DNT)<sub>2</sub>] is hydrolytically stable and has a density of  $\rho = 1.52$  g/cm<sup>3</sup>.

Crystal structure of [N(CH<sub>3</sub>)<sub>4</sub>]<sup>+</sup>[BH<sub>2</sub>(DNT)<sub>2</sub>]<sup>-</sup>





### Syntheses of $[N(CH_3)_4]^+$ Salts of $H_3BDNT^-$ , $H_2B(DNT)_2^-$ , $HB(DNT)_3^-$ , and $B(DNT)_4^-$



- Reactions of [TMA][BH<sub>4</sub>] with HDNT in stoichiometric ratios in THF at 85 C resulted in mono-, di-, tri-, and tetra-substitution.
- In solution, the tri-substituted compound disproportionates to the di- and tetra-substituted ones.
- Compounds were characterized by NMR and vibrational spectroscopy.
- So far, we have only the crystal structure of the disubstituted compound, but efforts continue to obtain single crystals for the mono and tetra-substituted compounds.







Army Workshop, University of Maryland



#### **Raman Spectra**



Army Workshop, University of Maryland

OF SOUTHERN

CALIFORNIA





- [TMA][B(DNT)<sub>4</sub>] is thermally stable up at least 150 °C (TGA).
- [TMA][B(DNT)<sub>4</sub>] is also hydrolytically stable. It was dissolved in water and recovered from the solution unchanged based on its NMR spectra.
- [TMA][B(DNT)<sub>4</sub>] is insensitive.
  - Negative hammer test
  - Burns without explosion
  - Negative qualitative friction test
  - Smooth decomposition in TGA





• Although the displacement reaction with excess HDNT at 125 °C in THF resulted in the quantitative evolution of the expected amount of  $H_2$  and the formation of the tetra-substituted compound,

```
M[BH_4] + 4 HDNT \rightarrow M[B(DNT)_4] + 4 H_2
```

there were problems with THF side reactions.

- Side reactions can be avoided by using glyme as a solvent.
- The  $B(DNT)_4^-$  salts of Na<sup>+</sup>, PNP<sup>+</sup> and PPh<sub>4</sub><sup>+</sup> were prepared in this manner, and the Na<sup>+</sup> salt was converted to the NH<sub>4</sub><sup>+</sup> salt by ion exchange.
- So far, these salts were amorphous solids, but efforts continue to obtain their crystal structures.
- The reaction in glyme was also used successfully to scale up the synthesis of  $Na[H_2B(DNT)_2]$  to the 5 g level.





 $NH_4[B(DNT)_4]$  was prepared as an amorphous solid from the Na<sup>+</sup> salt by ion exchange in aqueous solution with Amberlyst 15 ion-exchange resin:



Army Workshop, University of Maryland







#### <sup>14</sup>N NMR in CH<sub>3</sub>CN:



(ppm) Army Workshop, University of Maryland





- Are working on improved HDNT process.
- Are working on growing single crystals of ABDNT.
- Have scaled up synthesis of ABDNT to 25 g level.
- Have verified its density experimentally.
- Have received funding from Cliff Bedford (ONR) to accelerate its process development for making larger amounts and better determine its properties.
- $NH_4^+[B(DNT)_4]^-$  is a very promising, high-performing, green replacement for AP.





- Why are we interested in polyazides?
- One azido group contributes about 80 kcal/mol to the endothermicity of a compound.
- Polyazides are important for primary explosives, energetic

binders, gas generators, high-nitrogen propellants.



 $MF_n + n Me_3SiN_3 \longrightarrow M(N_3)_n + n Me_3SiF$ 

- Azides can be obtained by the reaction of the fluorides with  $Me_3SiN_3$  in a suitable solvent, such as  $SO_2$ ,  $CH_3CN$ , or excess  $Me_3SiN_3$ .
- Advantages of this method:
  - Rapid fluoride/azide exchange
  - Complete conversions in a single step
  - Highly pure products
  - Easy product separation
- Over 40 novel polyazides, oxo-azides, and nitrido-azides have been prepared by us using this method.

## **Examples of Novel Polyazides**





[ReO<sub>2</sub>(N<sub>3</sub>)<sub>4</sub>]<sup>-</sup>

ISO

OF SOUTHERN CALIFORNIA

[OMo(N<sub>3</sub>)<sub>5</sub>]<sup>2-</sup>











Neutral polyazides can generally be stabilized by anion-formation:

$$M(N_3)_x + n A^+[N_3]^- \longrightarrow [A^+]_n[M(N_3)_{x+n}]^{n-1}$$
  
A = TMA, PPh<sub>4</sub>, Ph<sub>3</sub>PNPPh<sub>3</sub> (PNP)

- Anion formation increases ionicity of the azido groups.
- Increased ionicity enhances activation energy barrier toward catastrophic  $N_2$  elimination.

Ionic N<sub>3</sub>:  $[N=N=N]^{-}$ 

Covalent N<sub>3</sub>: -N-N≡N



## Other Methods for the Stabilization of Polyazides



Polyazides can also be stabilized by adduct-formation with a donor ligand:

 $M(N_3)_x + D \longrightarrow [M(N_3)_x] \cdot D$ 

D = THF, CH<sub>3</sub>CN, 1,10-Phenanthroline, 2,2'-Bipyridyl





## Bismuth azides,

a Non-toxic Alternative for Lead Diazide



$$BiF_3 + 3 Me_3SiN_3 \xrightarrow{CH_3CN} Bi(N_3)_3 + 3 Me_3SiF$$

- Pale yellow solid
- Stable at room temperature
- Explodes on provocation (e.g. touching with metal spatula, fast heating, striking with a hammer)

$$BiF_5 + 5 Me_3SiN_3 \longrightarrow Bi(N_3)_5 + 5 Me_3SiF$$

 $BiF_5 + 5 Me_3SiN_3 \longrightarrow Bi(N_3)_3 + 5 Me_3SiF + 3 N_2$ 

Some bismuth azides have recently also been reported: A. Villinger , A. Schulz, *Angew. Chem. Int. Ed.* 2010, *49*, 8017













CH<sub>3</sub>CN



 $Bi(N_3)_3 + 3 PPh_4^+[N_3]^-$ 



The triple negative charge increases the ionicity of the azido ligands, resulting in

 $[PPh_4]_3[Bi(N_3)_6]$ 

- long Bi-N bonds of 2.4-2.6 Å.
- similar N-N bonds of about 1.2 Å.
- N-N-N angles of close to 180°.

 $BiN_6$  skeleton is strongly distorted from octahedral geometry due to the presence of a sterically active free electron pair.







 $Bi(N_3)_3 + 3 PNP^+N_3^- \xrightarrow{CH_3CN} [PNP]_2[Bi(N_3)_5] + PNP^+N_3^-$ 



The azido ligands are less ionic than in  $[Bi(N_3)_6]^{3-}$ , resulting in

- shorter Bi-N bonds by about 0.2 Å.
- terminal N-N bonds that are shorter

than the internal ones.

• N-N-N angles of less than 180°.

The  $BiN_5$  skeleton has pseudo-octahedral geometry. The sixth ligand is a free electron pair in the axial position.



# Stabilization of Bismuth Polyazides by Adduct Formation



 $Bi(N_3)_3 + Bipy \longrightarrow Bi(N_3)_3 \cdot Bipy$  (no structure yet)  $[PPh_4]_2[Bi(N_3)_5] + Bipy \longrightarrow [PPh_4]_2[Bi(N_3)_5] \cdot Bipy$ 



Bi-N<sub>3</sub> bonds of 2.3-2.5 Å are between the ones in  $[Bi(N_3)_5]^{2-}$  and  $[Bi(N_3)_6]^{3-}$ .





- Metal azides can conveniently be prepared from the corresponding fluorides by reaction with trimethylsilyl azide and more than 40 novel polyazides, oxo-azides and nitrido-azides have been prepared and characterized.
- Metal polyazides can be stabilized by anion- and adduct-formation.
- Bismuth azides are a promising non-toxic alternative for lead(II) azide.





The performance of polynitrogens as monopropellants would dwarf that of hydrazine, would greatly exceed even many bipropellants, and result in reduced signature



LPPN = Low performing polyN ( $N_5^+N_3^-$ );

HPPN = High performing polyN (cubic  $N_8$ )

## Polynitrogens would also have great potential as high-performance explosives


### Challenge of Polynitrogen HEDM Synthesis



- All the energy must come from endothermicity, and sensitivity typically increases with endothermicity
- Basis for high energy content is the large differences in bond energies

| Carbon bond enthalpies         |                                 |  |  |  |
|--------------------------------|---------------------------------|--|--|--|
| C_C                            | 85 kcal/mol                     |  |  |  |
| C=C                            | 143 kcal/mol                    |  |  |  |
| C≡C                            | 194 kcal/mol                    |  |  |  |
| _HC_CH) <i>n</i> _<br>35 + 143 | +34 HC <sub>≡</sub> CH<br>→ 194 |  |  |  |
| stable polymers.               |                                 |  |  |  |

unstable monomers

Nitrogen bond enthalpies

| N_N              | 38 kcal/mol  |
|------------------|--------------|
| N <sub>=</sub> N | 100 kcal/mol |

| N | I≣N | 226 k | cal/mol |
|---|-----|-------|---------|
|   |     |       |         |

| (_N <sub>=</sub> N) <i>∩</i> _ | -88 | N <sub>≡</sub> N |
|--------------------------------|-----|------------------|
| 38 + 100                       |     | 226              |

unstable polymers, stable monomer



### General Concepts for Polynitrogen HEDM Synthesis



- All polynitrogens are thermodynamically unstable with respect to N<sub>2</sub> molecules and possess only kinetic stability.
- Their activation energy for N<sub>2</sub> elimination is largely determined by the weakest bond in the compound.
- Their kinetic stability is enhanced if suitable resonance structures exist:

$$\left[|\overline{\underline{N}}-\underline{N}\equiv\underline{N}|\right]^{-} \longleftrightarrow \left[(\overline{\underline{N}}=\underline{N}=\underline{N})^{-}\right]^{-} \longleftrightarrow \left[|\underline{N}\equiv\underline{N}-\underline{\overline{N}}|\right]^{-}$$

• The double-bond character of the N—N bonds in the azide anion explains its exceptional stability.



# Synthesis and Characterization of $N_5^+ SbF_6^-$



• Prepared  $N_5^+SbF_6^-$ :

# $\begin{array}{rcl} & \mathsf{HF} \\ \mathsf{N_2F^+SbF_6^-} \ + \ \mathsf{HN_3} \ \longrightarrow \ \mathsf{N_5^+SbF_6^-} \ + \ \mathsf{HF} \\ & -78^\circ\mathsf{C} \ \mathsf{to} \ \mathsf{RT} \end{array}$

- Properties of  $N_5^+SbF_6^-$ :
  - ➤ White solid
  - ➤ Stable to 70 C
  - Obtained in high purity
  - Does not explode at 300 kg•cm (impact sensitivity test)
  - Exhibits all the vibrational bands with the predicted frequencies
  - ➢ Soluble in SO₂, SO₂CIF, and HF
  - Are preparing it routinely on a 5 g scale



## Crystal Structure of $N_5^+Sb_2F_{11}^-$







 N<sub>5</sub>SbF<sub>6</sub> was successfully converted to N<sub>5</sub>B(CF<sub>3</sub>)<sub>4</sub> by metathesis in SO<sub>2</sub> solution

$$N_5SbF_6 + KB(CF_3)_4 \xrightarrow{SO_2} N_5B(CF_3)_4 + KSbF_6$$

- $N_5B(CF_3)_4$  is a white solid, stable at room temperature
  - Characterized by vibrational spectroscopy







 $N_5^+SbF_6^- + Cs^+[N(CF_3)_2]^- + (n+2)HF \xrightarrow{HF} N_5HF_2 \cdot nHF + CsSbF_6\downarrow + HN(CF_3)_2$ 

•  $N_5^+HF_2^-$  *n*HF is a very useful reagent for the syntheses of other new stable  $N_5^+$  salts:

$$N_5HF_2 \cdot nHF + PF_5 \longrightarrow N_5PF_6 + (n+1)HF$$
  
 $N_5HF_2 \cdot nHF + BF_3 \longrightarrow N_5BF_4 + (n+1)HF$   
 $N_5HF_2 \cdot nHF + HSO_3F \longrightarrow N_5SO_3F + (n+2)HF$ 



• First successful combinations of  $N_5^+$  with highly energetic anions:

$$N_{5}SbF_{6} + NaP(N_{3})_{6} \xrightarrow{SO_{2}, -64^{\circ}C} N_{5}P(N_{3})_{6} + NaSbF_{6}\downarrow$$
$$N_{5}SbF_{6} + NaB(N_{3})_{4} \xrightarrow{SO_{2}, -64^{\circ}C} N_{5}B(N_{3})_{4} + NaSbF_{6}\downarrow$$

- NaP(N<sub>3</sub>)<sub>6</sub> and NaB(N<sub>3</sub>)<sub>4</sub> are already extremely shock-sensitive and their N<sub>5</sub><sup>+</sup> salts are even more vicious.
- $N_5B(N_3)_4$  contains 96 weight % of energetic nitrogen.



## How much damage can 100 mg of $N_5^+[P(N_3)_6]^-$ cause ?







### Search for New Polynitrogen Anions



### Pentazolate anion (N<sub>5</sub>-)

- Theoretical calculations show that this anion has a 28 kcal/mole activation energy barrier for decomposition and its decomposition to N<sub>3</sub><sup>-</sup> and N<sub>2</sub> is only 11 kcal/mol exothermic
- Free pentazole, HN<sub>5</sub>, has not been isolated to date. Only aryl substituted pentazoles, RN<sub>5</sub>, were known for 40 years. These compounds decompose at room temperature to form aryl azides and N<sub>2</sub> gas







- The N<sub>5</sub><sup>-</sup> anion was discovered by us in 2002 at AFRL using Electro Spray negative Ion Mass Spectroscopy (ESIMS) and published in 2002 in Angewandte Chemie.
- The AFRL results were confirmed by Oestmark et al. in 2003.
- A bulk synthesis of the zinc salt of N<sub>5</sub><sup>-</sup> has been claimed by Butler et al. in 2003, based upon nitrogen-NMR spectra.
- We have repeated Butler's work and have shown that his NMR signal attributed to N<sub>5</sub><sup>-</sup> is due to the nitrate anion (Chem. Commun. 2005).
- The bulk synthesis of  $N_5^-$  is still being pursued at USC and elsewhere.





• Our successful synthesis of  $N_5^+$ 

$$N_2F^+ + HN_3 \longrightarrow N_5^+ + HF$$

implied that a similar approach might also work for other cations, such as  $NOF_2^+$ 

$$NF_2O^+ + HN_3 \longrightarrow N_3NFO^+ + HF$$
  
 $N_3NFO^+ + HN_3 \longrightarrow N_3N(O)N_3^+ + HF$ 





• 1:1 Reaction

 $N_3NOF^+SbF_6^-$  was successfully prepared in HF solution between -45 °C and room temperature.

 $NOF_2^+SbF_6^- + HN_3 \longrightarrow N_3NOF^+SbF_6^- + HF$ 

• 1:2 Reaction

 $NOF_2^+SbF_6^- + 2 HN_3 \longrightarrow N_5^+SbF_6^- + 2 HF + N_2O$ 

 $N_5^+$  formation was observed at temperatures as low as -64 °C, and the replacement of  $HN_3$  by  $(CH_3)_3SiN_3$  and of HF solvent by  $(CF_3)_2CFH$  did not change the course of the reaction.





- We have successfully characterized the novel  $N_5^+$ , cyclo- $N_5^-$ ,  $N_3NOF^+$  and  $N_7O^+$  ions.
- We have shown that the syntheses of ionic pure polynitrogen compounds, such as  $N_5^+N_3^-$  or  $N_5^+N_5^-$ , is impossible.
- The bulk synthesis of a kinetically stable nitrogen allotrope must be focused on neutral covalent polynitrogens.
- We are presently working on the synthesis of such neutral polynitrogens.





- Objective
  - Synthesize and characterize novel, powerful, high-density halogen oxidizers, capable of destroying biologically active materials
- Requirements for the novel oxidizer
  - Must be a powerful oxidizer
  - Must be capable of generating positive halogen atoms
  - Must have a high density for maximum target penetration
  - Must carry excess oxygen to give over-oxidized formulations
- Unique Approaches
  - Prepare new, high-density, halogen-based oxygen carriers
  - Formulate these new oxygen carriers with metal fuels or standard explosives, such as HMX or RDX, to produce a reactive oxidizing fire ball





#### •The new iodine (VII) oxide, $I_2O_7$ , was successfully prepared and identified.

- Although  $I_2O_7$  is thermally not stable enough,  $I_2O_6$  is an excellent highoxygen carrier and was fully characterized. It has an outstanding heat of formation (-90.2 kJ/mol), density (5.40 g/cm<sup>3</sup>), is thermally stable, has excellent explosives properties in aluminized formulations with a bootstrap, and can deliver the desired halogen atoms for the potential destruction of the biologically active materials.
- An improved, one-step, high-yield synthesis for  $I_2O_6$  from cheap, commercially available starting materials was developed and scaled up to the 100g level.
- Several hundred gram of  $I_2O_6$  were prepared and distributed to collaborators for neutron diffraction and neutron inelastic scattering, explosives testing, and biological activity studies.
- Continuation funding is in limbo.







- •The key challenges are not
  - the generation of new ideas
  - the availability of qualified manpower
  - lacking enthusiasm
- The major problems are
  - insufficient funding
  - no continuity of funding
  - small size of the programs
  - lack of funds for the purchase of major pieces of required equipment
  - hiring discrimination against non-US citizen in Gov. Labs



### **Thank You for Your Attention**







### Vibrational Spectrum of z-N<sub>3</sub>NFO<sup>+</sup>



|                   | observed freq, cm <sup>-1</sup> , rel int |            |                         |                     | calcd freq, (IR)[Ra] int <sup>b</sup> |                       |  |
|-------------------|-------------------------------------------|------------|-------------------------|---------------------|---------------------------------------|-----------------------|--|
| mode              | Ra, HF sol,                               | Ra, solid, | IR, <sup>c</sup> solid, | Δν                  | CCSD(T)/6-31G(d)                      | Δν                    |  |
|                   | 20 °C                                     | 20 °C      | 20 °C                   | $^{14}N/^{15}N^{d}$ | $^{14}$ N <sup>d</sup>                | $^{14}N/^{15}N^{d,e}$ |  |
| a' v <sub>1</sub> | 2253 [10]                                 | 2252 [10]  | f                       | 32                  | 2246 (27)[114]                        | 33.2                  |  |
| $v_2$             | 1771 [1.1]                                | 1771 [.8]  | 1765 s                  | 0                   | 1810(387)[6.2]                        | 0                     |  |
| $\nu_3$           | 1159 [1.7]                                | 1162 [1.8] | 1156 vs                 | 12-20 <sup>g</sup>  | 1201 (285)[49]                        | 20.5                  |  |
| $\nu_4$           | 979 [1]                                   | 980 sh, vw | 994 ms                  |                     | 991(71)[.40]                          | 13.3                  |  |
| $\nu_5$           | h                                         | 733 [.8]   | 732 m                   |                     | 750 (58)[8.3]                         | 4.4                   |  |
| $\nu_6$           | 680 sh                                    | 683 [1]    | i                       |                     | 669 (1.7)[9.3]                        | 0.7                   |  |
| $\nu_7$           | 546 [1.3]                                 | 548 [.6]   | 545 w                   |                     | 538 (6.7)[5.6]                        | 1.3                   |  |
| $\nu_8$           | 443 [0.6]                                 | 447 [0+]   |                         |                     | 436 (0.7)[.87]                        | 0.6                   |  |
| $\nu_9$           | 204 [4.4]                                 | 210 [1.5]  |                         |                     | 191 (1.1)[2.9]                        | 2.4                   |  |
| a'' $v_{10}$      | k                                         | 683 [1]    | i                       |                     | 656 (9.3)[.77]                        | 3.0                   |  |
| $\nu_{11}$        | 461 [0.4]                                 | 465 [.3]   |                         |                     | 451 (3.8)[.59]                        | 0                     |  |
| $v_{12}$          | 140 sh                                    | 140 sh     |                         |                     | 142(0.37)[.24]                        | 0.8                   |  |



#### Vibrational Spectrum of e-N<sub>3</sub>NFO<sup>+</sup>



|                   | observed freq, cm <sup>-1</sup> , rel int |            |                         |                     | calcd freq, (IR)[Ra] int <sup>b</sup> |                       |  |  |
|-------------------|-------------------------------------------|------------|-------------------------|---------------------|---------------------------------------|-----------------------|--|--|
| mode              | Ra, HF                                    | Ra, solid, | IR, <sup>c</sup> solid, | Δν                  | CCSD(T)/6-31G(d)                      | Δν                    |  |  |
|                   | sol, 20 °C                                | 20 °C      | 20 °C                   | $^{14}N/^{15}N^{d}$ | $^{14}$ N <sup>c</sup>                | $^{14}N/^{15}N^{d,e}$ |  |  |
| a' v <sub>1</sub> | 2253 [10]                                 | 2252 [10]  | f                       | 32                  | 2249 (16)[126]                        | 33.4                  |  |  |
| $v_2$             | 1705 [0.7]                                | 1704 [0.6] | 1704 ms                 | 0                   | 1739 (273)[8.9]                       | 0.5                   |  |  |
| $\nu_3$           | 1159 [1.7]                                | 1162 [1.8] | 1156 vs                 | 12-20 <sup>g</sup>  | 1210 (413)[44]                        | 12.0                  |  |  |
| $\nu_4$           | 991 [.9]                                  | 995 [1.3]  | 994 ms                  | 10                  | 1009 (12)[5.6]                        | 9.8                   |  |  |
| $v_5$             | h                                         | 901 [0.4]  | 903 m                   | 18.7                | 885 (24)[7.2]                         | 18.5                  |  |  |
| $\nu_6$           | 668 [1]                                   | 672 [0+]   | i                       |                     | 658 (14)[6.6]                         | 0.8                   |  |  |
| $v_7$             | 516 [.7]                                  | 519 [.6]   | 518 w                   |                     | 504 (5.3)[3.9]                        | 1.8                   |  |  |
| $\nu_8$           | 465 [0+]                                  | 465 [.4 ]  | 463 w                   |                     | 451 (1.7)[.95]                        | 0.9                   |  |  |
| $\nu_9$           | 180 sh                                    | 193 sh     |                         |                     | 177 (1.1)[4.2]                        | 2.0                   |  |  |
| a'' $v_{10}$      | k                                         |            | i                       |                     | 675 (10)[.86]                         | 1.5                   |  |  |
| $v_{11}$          |                                           | 480 [0+]   | 477 vw                  |                     | 473 (1.5)[.39]                        | 0.4                   |  |  |
| $v_{12}$          | 140 sh                                    | 140 sh     |                         |                     | 159 (0.00)[.39]                       | 0.8                   |  |  |



## <sup>119</sup> Sn NMR Spectrum of N<sub>5</sub>SnF<sub>5</sub>





3-6 April, 2011





- Controlled decomposition of (N<sub>5</sub><sup>+</sup>)<sub>2</sub>SnF<sub>6</sub><sup>2-</sup> to N<sub>5</sub><sup>+</sup>SnF<sub>5</sub><sup>-</sup> and "FN<sub>5</sub>" allowed us to search for FN<sub>5</sub> by dynamic FT-IR spectroscopy
- Observed only  $FN_3$  and its decomposition products ( $N_2F_2$  and  $NF_3$ )
- Theoretical study was carried out showing six stable isomers differing by about 6 (MP2) and 10 (CCSD(T)) kcal/mol in energy
- Intrinsic reaction coordinate and dynamic reaction path calculations were used to study the isomerization and decomposition of  $FN_5$
- Based on a Rice-Ramsperger-Kassel-Marcus analysis, the lifetime of  $FN_5$  was estimated to be in the nanosecond range explaining our failure to observe  $FN_5$  experimentally



### Polyazides can be Dangerous!!

















Reaction of HDNT with alkali metal carbonates





Reaction of HDNT with AgNO<sub>3</sub>







#### Reaction of HDNT with amines



#### $RR'NH = NH_3$ , tetrazole, 2-amino tetrazole



### Alkali metal [DNT]<sup>-</sup> salts







#### NaDNT-2 $H_2O$ $\rho = 1.746 \text{ g/cm}^3$

#### KDNT-2 H<sub>2</sub>O ρ = 1.846 g/cm<sup>3</sup> Water loss: 40 - 120°C (TGA) Decomp: 270°C (TGA)



### Alkali metal [DNT]<sup>-</sup> salts (cont.)















### Ammonium [DNT]<sup>-</sup> salts









 $N(CH_3)_4CI + BCI_3 + 4 KDNT \xrightarrow{SO_2} 2 KCI + [N(CH_3)_4]^+[CI_2B(DNT)_2]^- + 2 KDNT$ 



 Only partial ligand exchange (even at 100 C under autogenous pressure in a steel cylinder)

•  $[N(CH_3)_4]^+[CI_2B(DNT)_2]^-$  was characterized by its X-ray crystal structure, is hydrolytically stable and has a density of  $\rho = 1.60$ g/cm<sup>3</sup>.





- Green Replacement for AP (ONR)
- Polyazide Chemistry (NSF)
- Polynitrogen Chemistry (AFOSR)
- Dense High-Energy Oxygen Carriers for Agent Defeat (DTRA)





## Discover, synthesize, characterize, and scale-up novel, highly energetic nitrogen-rich compounds

#### Technical Approach:

- Exploit synergism between theory and synthesis
  - Use calculations to identify the most promising candidates and predict their properties
  - Use experimental expertise to design synthesis approaches, prepare novel compounds, and characterize products







- Only two all-nitrogen species had ever been isolated in bulk quantities:
  - N2 was extracted from air in 1772 (Scheele, Cavendish, Rutherford)
  - ◆ The azide ion, N<sub>3</sub><sup>-</sup>, was synthesized in 1890 (Curtius)



• Calculations over the past 20 years have suggested that other polynitrogens might exist, but none had ever been isolated in bulk





### **Publicity for N<sub>5</sub><sup>+</sup> Synthesis**









 Although at first glance linear N<sub>4</sub> and N<sub>5</sub><sup>+</sup> look like ideal targets with nothing but double bonds, theoretical calculations show these structures to be vibrationally unstable because of neighboring positive charges:

 $\begin{bmatrix} N=N=N=N=N \end{bmatrix}^{+} \\ (-)(+)(+)(+)(-) \end{bmatrix}$ 

 However, if one allows N<sub>5</sub><sup>+</sup> to be bent, resonance structures can be written that avoid neighboring positive charges:



• Ab initio calculations confirm the stability of this C<sub>2v</sub> structure



### Selection of Suitable Starting Materials for N<sub>5</sub><sup>+</sup> Synthesis

- Requirements:
  - Starting fragments must contain already high energy (relatively weak bonds)
  - > Must have formal positive charge (first IP of  $N_2 = 359$  kcal/mol)
  - Coupling reaction must be exothermic
  - Suitable solvent must be used as a heat sink and for stabilization
- Ideal candidate system:








• Reaction system worked as planned:

$$\begin{array}{rcl} & \mathsf{HF} \\ \mathsf{N}_2\mathsf{F}^+\mathsf{AsF}_6^- \ + \ \mathsf{HN}_3 \ \longrightarrow \ \mathsf{N}_5^+\mathsf{AsF}_6^- \ + \ \mathsf{HF} \\ & -78^\circ\mathsf{C} \end{array}$$

➤ High yield

- > 2 mmol (0.5 g) scale
- Properties of N<sub>5</sub><sup>+</sup>AsF<sub>6</sub><sup>-</sup>:
  - White solid
  - Sparingly soluble in HF
  - ➢ Marginally stable at 22 C
  - Highly energetic
  - Reacts violently with water and organics
  - > Calculated  $\Delta H_f$  (298 C) = 351 kcal/mol



## N<sub>5</sub><sup>+</sup>AsF<sub>6</sub><sup>-</sup> in Low-Temperature Raman Spectrometer







3-6 April, 2011



#### Crystal Structure of N<sub>5</sub><sup>+</sup>Sb<sub>2</sub>F<sub>11</sub><sup>-</sup>



Crystal structure of N<sub>5</sub><sup>+</sup> was in perfect agreement with our calculated predictions







• Reduction of  $N_2F_4$  to  $N_2F_2$ 

Graphite + AsF<sub>5</sub>  $\longrightarrow$  C<sub>12</sub>•AsF<sub>5</sub>

 $C_{12}$   $AsF_5 + N_2F_4 \longrightarrow 2 C_{12}^+AsF_6^- + trans - N_2F_2$ 

• *trans-cis* isomerization of  $N_2F_2$ :

$$trans-N_{2}F_{2} + AsF_{5} \xrightarrow{T/P} N_{2}F^{+}AsF_{6}^{-}$$
$$N_{2}F^{+}AsF_{6}^{-} + NaF \xrightarrow{HF} NaAsF_{6} + cis-N_{2}F_{2}$$

• Formation of  $N_2F^+SbF_6^-$ :

$$cis-N_2F_2 + SbF_5 \longrightarrow N_2F^+SbF_6^-$$

• If N<sub>2</sub>F<sub>4</sub> is not available, add:

 $H_2NCONH_2 \longrightarrow F_2NCONH_2 \longrightarrow NHF_2 \longrightarrow N_2F_4$ 

## Typical Vacuum Line and Safety Equipment





UNIVERSITY

OF SOUTHERN CALIFORNIA



# Vibrational Spectra of the New N<sub>5</sub><sup>+</sup> Salts





UNIVERSITY OF SOUTHERN

CALIFORNIA





• Low-temperature Raman spectra



- Material balances
- Compounds are stable at -64 C, but explode violently on warm-up toward room temperature



#### Synthesis of More Energetic N<sub>5</sub><sup>+</sup> Salts Chem. Eur. J. 2003, 9, 2840

• Doubling of the  $N_5^+$  content:

$$2 N_5 SbF_6 + Cs_2 SnF_6 \xrightarrow{HF} (N_5)_2 SnF_6 + 2 CsSbF_6$$

- Successful synthesis of  $(N_5)_2 SnF_6$  demonstrates that polynitrogen salts with touching polynitrogen ions can be prepared
- The salt is friction sensitive and can decompose explosively, but under carefully controlled conditions, stepwise decomposition is possible

$$(N_5)_2 SnF_6 \longrightarrow N_5 SnF_5 + "N_5F"$$
  
20°C

- N<sub>5</sub>SnF<sub>5</sub> is a white solid, stable at room temperature
  - ➢ N<sub>5</sub>SnF<sub>5</sub> was characterized by vibrational and NMR spectroscopy, but

 $N_5F$  is too short-lived for experimental observation (<u>J. Phys</u>. <u>Chem. A</u>, <u>107</u>, 6638 (2003))





#### • N<sub>5</sub><sup>+</sup>NO<sub>3</sub><sup>-</sup>

Desired metathesis:

$$N_5SbF_6 + CsNO_3 \xrightarrow{SO_2} N_5NO_3 + CsSbF_6$$
  
-64 to 20°C

 $\succ$  Did not proceed because CsNO<sub>3</sub> is less soluble in SO<sub>2</sub> than CsSbF<sub>6</sub>

> U<sub>L</sub> required for stabilization is 154 kcal/mol; estimate for N<sub>5</sub><sup>+</sup>NO<sub>3</sub><sup>-</sup> is 129 kcal/mol

#### • N<sub>5</sub><sup>+</sup>ClO<sub>4</sub><sup>-</sup>

Desired metathesis resulted in:

$$N_5SbF_6 + CsClO_4 \xrightarrow{HF} NO^+ClO_4^- + CsSbF_6 + N_2$$

> U<sub>L</sub> required for stabilization is 138 kcal/mol; estimate for N<sub>5</sub><sup>+</sup>ClO<sub>4</sub><sup>-</sup> is 125 kcal/mol





- Heat of formation of  $N_5^+N_3^-$ 
  - $> \Delta H_f$  (298) of N<sub>5</sub><sup>+</sup><sub>(g)</sub> = 351 kcal/mol (calculated value)
  - $> \Delta H_f$  (298) of N<sub>3</sub><sup>-</sup><sub>(g)</sub> = 43.2 kcal/mol (NBS tables)
  - > Lattice energy of  $N_5^+N_3^- \approx 130$  20 kcal/mol (Christe estimate)

So  $\Delta H_f$  (298) of N<sub>5</sub><sup>+</sup>N<sub>3</sub><sup>-</sup> = 351 + 43 - 130 = 264 25 kcal/mol

- Energy density of  $N_5^+N_3^-$  = 2.36 kcal/g
- Comparison with other molecular systems (kcal/g):

$$O_3$$
 $C(N_3)_3^+N(NO_2)_2^ HN_3$  $N_5^+N_3^ H_2/O_2$ 0.711.421.632.363.21





- Our theoretical calculations and Born-Haber cycles show that, contrary to a literature claim, both N<sub>5</sub><sup>+</sup>N<sub>5</sub><sup>-</sup> and N<sub>5</sub><sup>+</sup>N<sub>3</sub><sup>-</sup> are unstable by large margins.
- The use of vertical instead of adiabatic potentials and the assumption of vibrationally stable N<sub>5</sub> radicals as the decomposition products caused huge errors of about 100 kcal/mol per N<sub>5</sub> unit in the previous stability predictions.
- Our conclusion that N<sub>5</sub><sup>+</sup>N<sub>3</sub><sup>-</sup> and N<sub>5</sub><sup>+</sup>N<sub>5</sub><sup>-</sup> are unstable and decompose spontaneously with N<sub>2</sub> evolution was experimentally confirmed in our

laboratory for  $N_5^+N_3^-$ 

Desired metathesis:

$$N_5SbF_6 + CsN_3 \xrightarrow{SO_2} N_5N_3 + CsSbF_6$$
  
-64°C

Obtained products:





# ES-IMS of para-Pentazolylphenolate

Angew. Chem. 41, 3051 (2002), and C&E News, Aug 19, 2002







#### Presently Known, Stable Nitrogen Fluoride Oxides







## **Coworkers** (wishful thinking)







 The new B(NX)<sub>4</sub><sup>-</sup> skeleton was synthesized from KSCN and BCl<sub>3</sub>:







 Isothiocyanates can be converted into isocyanates by treatment with dimethyldioxirane:



 The isocyanate can then be further oxidized to the nitro compound:

$$R \longrightarrow N \Longrightarrow C \Longrightarrow R \longrightarrow NO_2$$







- Another promising B(NX)<sub>4</sub><sup>-</sup> skeleton is [B(N(SiMe<sub>3</sub>)<sub>2</sub>)<sub>4</sub>]<sup>-</sup>
- Synthesis

 $4 \text{ KN}(\text{SiMe}_3)_2 + \text{BCl}_3 \xrightarrow{\text{CH}_3\text{CN}} \text{K}[\text{B}(\text{N}(\text{SiMe}_3)_2)_4] + 3 \text{ KCl}$ 

Proposed conversions to [B(NO<sub>2</sub>)<sub>4</sub>]<sup>-</sup>

 $K[B(N(SiMe_3)_2)_4] \xrightarrow{[0]} K[B(NO_2)_4] + 2 Me_3SiOSiMe_3$ 





#### $N(CH_3)_4CI + BCI_3 + 4 KDNT \xrightarrow{SO_2} 2 KCI + [N(CH_3)_4]^+[CI_2B(DNT)_2]^- + 2 KDNT$



- Only partial ligand exchange (even at 100 C under autogenous pressure in a steel cylinder)
- $[N(CH_3)_4]^+[CI_2B(DNT)_2]^-$  was characterized by its X-ray crystal structure, is hydrolytically stable and has a density of  $\rho = 1.60$  g/cm<sup>3</sup>



 $VF_4 + 4 Me_3SiN_3 \xrightarrow{CH_3CN} V(N_3)_4 + 4 Me_3SiF$ 

- Solid appears black, dilute solutions are dark red
- Stable at room temperature
- Very sensitive and explodes violently upon provocation
- MP2/MCP-TZP calculation results in  $S_4$  structure, B3LYP/MCP-TZP calculation favors  $D_{2d}$  isomer.



R. Haiges, J.A. Boatz, K.O. Christe, Angew. Chem. Int. Ed. 2010, 49, 8008





CH<sub>3</sub>CN  $A_{2}[V(N_{3})_{6}]$  $V(N_3)_4 + 2 A^+[N_3]^ A = PPh_4$ , PNP N15 dark maroon to nearly black solids stable at room temperature melting point (decomp.): PPh<sub>4</sub><sup>+</sup> salt: 175 - 177°C PNP<sup>+</sup> salt: 169 - 172°C N1 N12



Reaction of VF<sub>5</sub> with  $Me_3SiN_3$  did not result in the isolation of V(N<sub>3</sub>)<sub>5</sub>:

$$VF_5 + 5 Me_3 SiN_3 \longrightarrow V(N_3)_5 + 5 Me_3 SiF$$

Even at temperatures of -35°C, dinitrogen is released and  $V(N_3)_4$  obtained:

$$2 VF_5 + 10 Me_3SiN_3 \longrightarrow 2 V(N_3)_4 + 10 Me_3SiF + 3 N_2$$

١



A vanadium(V) azide was obtained by the following sequence:

 $VF_5 + [NMe_4][F] \longrightarrow [NMe_4][VF_6]$  $[NMe_4][VF_6] + 6 Me_3 SiN_3 \longrightarrow [NMe_4][V(N_3)_6]$ 

- dark maroon to nearly black amorphous solid
- thermally stable at room temperature
- highly shock-sensitive
- Only three other binary vanadium(V) species known: VF<sub>5</sub>, VF<sub>6</sub><sup>-</sup>, V<sub>2</sub>O<sub>5</sub>





#### Predicted structures (MP2/MCP-TZP and B3LYP/MCP-TZP):



 $[V(N_3)_6]^{2-}$ :  $D_{3d}$ octahedral VN<sub>6</sub> skeleton with six similar V-N bonds -N<sub>3</sub> groups are more ionic V-N: 2.03 Å (B3LYP) Exp: 2.00 Å



 $[V(N_3)_6]$ <sup>-</sup>:  $C_1$ distorted VN<sub>6</sub> skeleton with three short and three long V-N bonds -N<sub>3</sub> groups are more covalent V-N: 1.96 Å (B3LYP)







- dark maroon to nearly black solid
- thermally stable at room temperature
- much less shock-sensitive than parent compound
- only spectroscopy data
- no crystal structure so far





Niobium and Tantalum Fluorides (Using an Excess of TMSA)



 $[MF_4 \cdot 2 \operatorname{Bipy}][M(N_3)_6] + 4 \operatorname{Me}_3 \operatorname{SiN}_3 \longrightarrow [M(N_3)_4 \cdot 2 \operatorname{Bipy}][M(N_3)_6] + 4 \operatorname{Me}_3 \operatorname{SiF}$  (M = Nb, Ta)









- <sup>14/15</sup>N and <sup>19</sup>F NMR and vibrational spectra show the presence of 2 isomers which we could not separate.
- Theoretical calculations at the B3LYP, MP2 and CCSD(T) levels showed two minimum energy structures (*z* and *e*-isomers) of very similar energies ( $\Delta E \le 0.6$ kcal/mol) and one cyclic isomer (5-membered N<sub>4</sub>O-ring with F in  $\alpha$ -position to O) which is 34.9 kcal/mol higher in energy.
- Calculated CCSD(T) structures (planar, C<sub>s</sub> symmetry)





#### NMR Parameters for the two N<sub>3</sub>NFO<sup>+</sup> Isomers (values calcd at B3LYP level in [])



#### Ratio of z- to e-isomer = 1:1.45

Army Workshop, University of Maryland

IS

UNIVERSIT

OF SOUTHERN

CALIFORNIA





- $N_3NOF^+SbF_6^-$  is a white solid that is stable at room temperature.
- It thermally decomposes at 60 °C

 $3 N_3 NFO^+SbF_6^- \longrightarrow 3 NO^+SbF_6^- + 4 N_2 + NF_3$ 

- It is
  - ➢ soluble in HF
  - Joes not detonate when struck with a hammer or scraped with a spatula
  - deflagrates when heated in an open flame
  - ➢ ignites ethanol and reacts violently with water



#### Comparison of NMR Parameters with Those of Related Covalent Azides



• With increasing electron withdrawing power of the ligand,  $N_{\alpha}$  and  $N_{\gamma}$  become deshielded

CALIFORNIA



#### Typical Raman Spectrum of N<sub>3</sub>NFO+SbF<sub>6</sub><sup>-</sup>









- We were not able to observe directly the postulated  $\,N_7^{\rm O^+}$  cation

• Obtained very strong experimental and computational support for the formation of  $N_7O^+$  as an intermediate that rapidly loses  $N_2O$  at its formation temperatures.







• The azido arms in N<sub>7</sub>O<sup>+</sup> are very floppy and a C<sub>s</sub> isomer is only 2.7 kcal/mol higher in energy than the C<sub>2v</sub> isomer.

 The mechanism of the N<sub>2</sub>O elimination was established by isotopic labeling experiments and multinuclear NMR analysis of the decomposition products.



 $N_7 = N_5 = O_1 + N_5^+(C_{2v})$  equally labeled in all 5 positions

•  $N_2O$  labels suggest that negatively charged O attacks the positively charged N5, and the  $N_5^+$  labels show that the  $N_2O$  elimination involves the  $C_s$  isomer and a cyclic intermediate.





• The mechanism of the N<sub>2</sub>O elimination was also supported by preliminary theoretical calculations of the barriers. The N<sub>2</sub>O elimination from C<sub>s</sub> N<sub>7</sub>O<sup>+</sup> has a barrier of less than 43 kcal/mol, while the N<sub>2</sub>O elimination from N<sub>3</sub>NFO<sup>+</sup> has a barrier of about 80 kcal/mol, explaining why N<sub>7</sub>O<sup>+</sup> is thermally much less stable than N<sub>3</sub>NFO<sup>+</sup>.

• The synthesis of  $N_5^+$  from  $NF_2O^+$  and excess  $HN_3$  offers the following advantages over our previous synthesis from  $N_2F^+$ .

>  $NF_2O^+Sb_2F_{11}^-$  can be readily prepared in one-step and quantitative yield from commercially available  $NF_3$ ,  $N_2O$  and  $SbF_5$ .

$$NF_3 + N_2O + 2 SbF_5 \xrightarrow{150 C} NF_2O^+Sb_2F_{11}^- + N_2$$

Christe, JACS, **117**, 6136 (1995)

>  $N_5^+$  with <sup>15</sup>N labels in all 5 positions can be obtained from singly labeled  $N_3^-$ .


## Magic Chemistry at Loker







## Wintertime in LA









- Scale up the synthesis of [NH<sub>4</sub>][B(DNT)<sub>4</sub>] and fully characterize it (we really need our own test equipment! Can you help?).
  - File patents for [NH<sub>4</sub>][B(DNT)<sub>4</sub>].
  - Grow single crystals of B(DNT)<sub>4</sub><sup>-</sup> salts for structure determinations.
- Synthesize ionic liquids by replacement of NH<sub>4</sub><sup>+</sup> or Na<sup>+</sup> by energetic N-heterocyclic cations.
- If everything looks promising, transition the technology to NAVY laboratories for further testing and formulating.
  - Continue to pursue the syntheses of the  $[B(NO_2)_4]^-$  and  $[B(DN)_4]^-$  anions.







KDNT

V. M. Chernyshev, N.D. Zemlyakov, V. B. Il'in, V. A. Taranushich, *Russ. J. Appl. Chem.* 2000, 73, 839.

CALIFORNIA