Metal Complexes Containing High Nitrogen Content Poly(tetrazolyl)metalate Ligands

Charles H. Winter Department of Chemistry Wayne State University 5101 Cass Avenue Detroit, Michigan 48202

Workshop on "Synthesis of Advanced Energetic Materials-The Path Forward" April 3-5, 2011

Outline

- Introduction
- Metal poly(tetrazolyl)borate ligands
- Poly(pyrazolyl)aluminate ligands
- Poly(tetrazolyl)aluminate ligands
- Summary and conclusions

Our Overall Goal: Prepare metal complexes containing as many nitrogen atoms as possible

Metal-Based Energetic Materials

1-methyl-5-nitriminotetrazolate

nitrotetrazolate

- Use of non-toxic or low toxicity metal ions such as copper, zinc, iron, and others → green explosives
- Tetrazole-based ligands have been used due to high endothermicity, high nitrogen contents, tunable sensitivity, and low smoke formation

Klapötke, T. M. *Eur. J. Inorg. Chem.* **2007**, 4743-4750 Hiskey, M. A. *PNAS* **2006**, *103*, 5409-5412

Equivalents of N₂ per Negative Charge

tetrazolate

R = nitrogen-based

pentazolate

- $2 N_2$ /negative charge $>2 N_2$ /negative charge $2.5 N_2$ /negative charge
- Ligand charge determines stoichiometry in metal complexes
- Highest possible nitrogen content desired
- Tetrazolate and even pentazolate have modest nitrogen contents
- Nitrogen-based carbon substituents in tetrazolates can boost nitrogen and gaseous product contents

Klapötke, T. M. Angew. Chem. Int. Ed. **2008**, 47, 3330-3347 Christe, K. O. Angew. Chem. Int. Ed. **2002**, 41, 3051-3054

Azobis(tetrazolate) Complexes

- N=N
 A frontier of nitrogen-rich ligands
 2.5 N₂/negative charge
 - Metal salts known
 - Relatively stable when hydrated; shock and friction sensitive when anhydrous

Klapötke and Shreeve Laboratories Inorg. Chem. **2009**, 48, 9918-9923 Eur. J. Inorg. Chem. **2002**, 4, 834-845 Chem. Mater. **2008**, 20, 1750-1763

Poly(pyrazolyl)borate Complexes

R

>3000 crystal structures of Bp and Tp complexes

Energetic Tris(1,2,4-triazoyl)borate-Containing Materials

- Bis- and tris(1,2,4-triazolyl)borate ligands are well known
- 1,2,4-triazole heat of formation = 109 kJ/mol
- Nitro groups or energetic cations affords energetic species

Shreeve, J. M. Organometallics **2007**, *26*, 1782-1787 Santini, C. *Inorg. Chim. Acta* **2007**, *360*, 2121-2127

What About Poly(tetrazoyl)metalate Complexes (M = B, Al)?

Bis(tetrazoyl)borate Complexes

5-aminotetrazolyl analogs: T. J. Groshens *J. Coord. Chem.* **2010**, *63*, 1882-1892

Crystal Structures of $M(BH_2(CHN_4)_2)_2(H_2O)_2$ (M = Mn, Fe, Co, Zn, Cd)

4-nitrogen atom more basic than 2-nitrogen atom; leads to bridging ligands

Janiak, C. Chem. Ber. 1995, 128, 323-328

Synthesis of [K(18-crown-6)]⁺ Complexes Containing Bis(tetrazolyl)borate Ligands

Lu, D.; Winter, C. H. *Inorg. Chem.* **2010**, *49*, 5795-5797

 $R = N(CH_3)_2, 77\%$ R = N(CH(CH_3)_2)_2, 80%

Comments

- 18-Crown-6 complexes synthesized to simplify the coordination chemistry and focus on ligand bonding modes
- Crystal structures determined for all four complexes
- Like Janiak's complexes, bis(tetrazolyl)borate and bis(methyltetrazolyl)borate complexes show B-N formation to the 2-nitrogen atoms and exhibit bridging coordination modes
- By contrast, bis(dimethylaminotetrazolyl)borate and bis(diisopropyltetrazolyl)borate complexes show B-N formation to the 3-nitrogen atoms and exhibit chelating coordination modes

Crystal Structure of [K(BH₂(HCN₄)₂)(18-crown-6)]

- Polymeric structure through K-N bonds to N(2) and N(4)'
- Coordination to N(2) (N₂) not seen in Janiak's complexes
- B-N bonds to tetrazolyl N_1 atoms

Crystal Structure of [K(BH₂(NiPr₂CN₄)₂)(18-crown-6)]

- Monomeric structure through K-N(2), K-N(7), and K-HB bonds
- B-N bonds form to tetrazolyl N_2 atoms
- Isomeric B-N bonds probably steric in origin

Comments on Structures

- Bridging ligands adopt $\kappa^2\text{-}N,\text{H-}$ and $\mu_2\text{-}N,\text{N-}coordination$ modes
- Chelating ligands adopt κ^3 -N,N,H-coordination modes
- The bridging ligand modes do a poor job of saturating the coordination spheres of metals, which requires non-energetic neutral ligands such as water to achieve saturation and stability
- Chelating κ³-N,N,H-coordination mode does a much better job of saturating the metal coordination spheres, which should reduce or eliminate coordination of non-energetic neutral ligands
- The coordination chemistry of the chelating κ³-N,N,H-ligands should resemble that of well developed bis(pyrazolyl)borate ligands
- Many potentially energetic complexes possible

Energetic Properties

- None is highly sensitive, probably due to lack of electronwithdrawing groups on the tetrazolyl core carbon atoms and the non-energetic 18-crown-6 ligands
- All melt without decomposition in 2 °C ranges between 111 and 158 °C; stable to >250 °C by TGA
- No explosions upon being struck hard with a hammer on an aluminum block
- Deflagrated with little smoke upon burning in a Bunsen burner flame
- Sparks from a Tesla coil did not lead to explosion; no explosion upon being scraped across 200-grit emery cloth with a spatula

Synthesis of K(BH₂(CH₃CN₄)₂)

- KBH₄ and methyl tetrazole were ground together and then heated as a solid mixture
- D. Lu, M.J. Heeg, C.H. Winter, manuscript in preparation
- Other substituted derivatives also prepared and characterized
- Energetic properties same as the 18-crown-6 complex

X-Ray Crystal Structure of K[BH₂(CH₃CN₄)₂]•(H₂O)_{0.5}

- Lithium salt was used to carry out the metathesis with group 2 metal iodides to form the corresponding bis(tetrazolyl)borates; Lil is soluble in THF with 5% water added, whereas the complexes are not
- $Ca[BH_2(CH_3CN_4)_2]_2 \cdot (H_2O)_4$, $Sr[BH_2(CH_3CN_4)_2]_2 \cdot (H_2O)_5$, and $Ba[BH_2(CH_3CN_4)_2]_2 \cdot (H_2O)_5$ were structurally characterized
- The complexes are air stable and insensitive toward shock, friction, and electrical discharge, but deflagrated upon burning with bright flame; *deflagration more violent than K*⁺ salts
- D. Lu, C.H. Winter, manuscript in preparation

Attempts to Prepare Tris(tetrazoyl)borate Ligands by Thermolysis

- Heating solid and solution mixtures tried under a variety of conditions
- $K[BH_2(CH_3CN_4)_2]$ • $(H_2O)_{0.5}$ was isolated in all cases
- Probably requires higher temperatures, but tetrazoles decompose between 170-200°C
- Experiments are ongoing

Other Related Complexes

- Only one tetrazolyl group incorporated under all conditions
- Polymeric, metalorganic framework structure!
- [BH₃(N₃)]⁻ has been claimed in the patent literature
- D. Lu, C.H. Winter, manuscript in preparation

Poly(pyrazolyl)aluminate Complexes

- C.J. Snyder, M.J. Heeg, C.H. Winter, manuscript in preparation
- These ligands have not been previously reported

X-Ray Crystal Structures

X-Ray Crystal Structure

Ligand and HydrideTransfer Reaction with ZnCl₂

Pyrazolate and HydrideTransfer Reactions with MBr₂

-2 | iBr

- Similar outcome with FeCl₂ and $CoCl_2$
- Many transition metal MCl₂ gave metal powders, presumably through MH₂ formation
- Pyrazolate and hydride transfers are facile

Lithium Tetrakis(tetrazolyl)aluminates?

- Reaction works for R = H, Ph, NMe₂, NiPr₂, tBu; yields ~90%
- Products precipitate from THF, except for R = tBu and NiPr₂, which are soluble; all are soluble in DMF and DMSO
- Solids lose THF upon standing \rightarrow Li-N bond formation?
- R = H explodes upon burning, but does not explode upon being hit with a hammer, scraping across 100 grit sandpaper, or passing sparks through it with a Tesla coil

Attempted Crystallization of R = Ph

Probing Dissociation by ¹H NMR

- ¹H NMR [Li(DMF)]⁺[HCN₄]⁻ δ 8.01 in DMSO-d₆
- ¹H NMR [Li(THF)₂]⁺[Al(HCN₄)₄]⁻ δ 8.65, 8.60, 8.35, 8.07 in DMSO-d₆
- No evidence for [Li(DMF)]⁺[HCN₄]⁻, but ¹H NMR spectrum of [Li(THF)₂]⁺[Al(HCN₄)₄]⁻ is more complex than expected
- Experiment does not rule out [Al(HCN₄)₄]⁻

Conclusions

- Bis(tetrazolyl)borate ligands are easily prepared; novel sterically-based ligand isomerism documented
- No routes thus far to tris(tetrazoyl)borate and tetrakis-(tetrazoyl)borate ligands
- Poly(pyrazolyl)aluminate ligands have been prepared and characterized for the first time; can serve as tripodal ligands, but pyrazolate and hydride transfer reactions can compete
- Salts of tetrakis(tetrazoyl)aluminate anions have been prepared and are under development → hottest compounds we have prepared to date
- Tetrazole-derived anion salts are energetic, and may lead to new types of high nitrogen content explosives and propellants

Acknowledgments

Christopher J. Snyder Dongmei Lu Dr. Mary Jane Heeg Office of Naval Research N00014-07-1-0105 Program Officer: Dr. Cliff Bedford

